Spaces:
Running
Running
import os | |
import ssl | |
import gradio as gr | |
import nltk | |
from config_utils import parse_configuration | |
from custom_prompt import CustomPromptGenerator | |
from custom_prompt_zh import ZhCustomPromptGenerator | |
from langchain.embeddings import ModelScopeEmbeddings | |
from langchain.vectorstores import FAISS | |
from modelscope_agent import prompt_generator_register | |
from modelscope_agent.agent import AgentExecutor | |
from modelscope_agent.agent_types import AgentType | |
from modelscope_agent.llm import LLMFactory | |
from modelscope_agent.retrieve import KnowledgeRetrieval | |
from modelscope_agent.tools.openapi_plugin import OpenAPIPluginTool | |
from modelscope_agent.utils.logger import agent_logger as logger | |
prompts = { | |
'CustomPromptGenerator': CustomPromptGenerator, | |
'ZhCustomPromptGenerator': ZhCustomPromptGenerator, | |
} | |
prompt_generator_register(prompts) | |
# try: | |
# _create_unverified_https_context = ssl._create_unverified_context | |
# except AttributeError: | |
# pass | |
# else: | |
# ssl._create_default_https_context = _create_unverified_https_context | |
# | |
# nltk.download('punkt') | |
# nltk.download('averaged_perceptron_tagger') | |
# init user chatbot_agent | |
def init_user_chatbot_agent(uuid_str=''): | |
builder_cfg, model_cfg, tool_cfg, available_tool_list, plugin_cfg, available_plugin_list = parse_configuration( | |
uuid_str) | |
# set top_p and stop_words for role play | |
model_cfg[builder_cfg.model]['generate_cfg']['top_p'] = 0.5 | |
model_cfg[builder_cfg.model]['generate_cfg']['stop'] = 'Observation' | |
# build model | |
logger.info( | |
uuid=uuid_str, | |
message=f'using model {builder_cfg.model}', | |
content={'model_config': model_cfg[builder_cfg.model]}) | |
# # check configuration | |
# if builder_cfg.model in ['qwen-max', 'qwen-72b-api', 'qwen-14b-api', 'qwen-plus']: | |
# if 'DASHSCOPE_API_KEY' not in os.environ: | |
# raise gr.Error('DASHSCOPE_API_KEY should be set via setting environment variable') | |
try: | |
llm = LLMFactory.build_llm(builder_cfg.model, model_cfg) | |
except Exception as e: | |
raise gr.Error(str(e)) | |
# build prompt with zero shot react template | |
prompt_generator = builder_cfg.get('prompt_generator', None) | |
if builder_cfg.model.startswith('qwen') and not prompt_generator: | |
prompt_generator = 'CustomPromptGenerator' | |
language = builder_cfg.get('language', 'en') | |
if language == 'zh': | |
prompt_generator = 'ZhCustomPromptGenerator' | |
prompt_cfg = { | |
'prompt_generator': | |
prompt_generator, | |
'add_addition_round': | |
True, | |
'knowledge_file_name': | |
os.path.basename(builder_cfg.knowledge[0] | |
if len(builder_cfg.knowledge) > 0 else ''), | |
'uuid_str': | |
uuid_str | |
} | |
# get knowledge | |
# 开源版本的向量库配置 | |
model_id = 'damo/nlp_gte_sentence-embedding_chinese-base' | |
embeddings = ModelScopeEmbeddings(model_id=model_id) | |
available_knowledge_list = [] | |
for item in builder_cfg.knowledge: | |
# if isfile and end with .txt, .md, .pdf, support only those file | |
if os.path.isfile(item) and item.endswith(('.txt', '.md', '.pdf')): | |
available_knowledge_list.append(item) | |
if len(available_knowledge_list) > 0: | |
knowledge_retrieval = KnowledgeRetrieval.from_file( | |
available_knowledge_list, embeddings, FAISS) | |
else: | |
knowledge_retrieval = None | |
additional_tool_list = add_openapi_plugin_to_additional_tool( | |
plugin_cfg, available_plugin_list) | |
# build agent | |
agent = AgentExecutor( | |
llm, | |
additional_tool_list=additional_tool_list, | |
tool_cfg=tool_cfg, | |
agent_type=AgentType.MRKL, | |
knowledge_retrieval=knowledge_retrieval, | |
tool_retrieval=False, | |
**prompt_cfg) | |
agent.set_available_tools(available_tool_list + available_plugin_list) | |
return agent | |
def add_openapi_plugin_to_additional_tool(plugin_cfgs, available_plugin_list): | |
additional_tool_list = {} | |
for name, cfg in plugin_cfgs.items(): | |
openapi_plugin_object = OpenAPIPluginTool(name=name, cfg=plugin_cfgs) | |
additional_tool_list[name] = openapi_plugin_object | |
return additional_tool_list | |
def user_chatbot_single_run(query, agent): | |
agent.run(query) | |