Spaces:
Runtime error
Runtime error
from langchain_community.llms import HuggingFaceHub | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.prompts import PromptTemplate | |
from langchain.chains.question_answering import load_qa_chain | |
from datasets import load_dataset | |
import pandas as pd | |
from functools import lru_cache | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Ensure you have set your Hugging Face API token here or as an environment variable | |
# Initialize the Hugging Face Inference Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Load dataset | |
dataset = load_dataset('arbml/LK_Hadith') | |
df = pd.DataFrame(dataset['train']) | |
# Filter data | |
filtered_df = df[df['Arabic_Grade'] != 'ุถุนูู'] | |
documents = list(filtered_df['Arabic_Matn']) | |
metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']] | |
# Use CharacterTextSplitter | |
text_splitter = CharacterTextSplitter(chunk_size=10000) | |
nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas) | |
# LLM - Using HuggingFaceHub with API token | |
llm = HuggingFaceHub(repo_id="salmatrafi/acegpt:7b", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN) | |
# Create an embedding model | |
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN) | |
docs_text = [doc.page_content for doc in nltk_chunks] | |
docs_embedding = embeddings.embed_documents(docs_text) | |
# Create Chroma vector store | |
vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings) | |
# Question answering prompt template | |
qna_template = "\n".join([ | |
"Answer the next question using the provided context.", | |
"If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'", | |
"### Context:", | |
"{context}", | |
"", | |
"### Question:", | |
"{question}", | |
"", | |
"### Answer:", | |
]) | |
qna_prompt = PromptTemplate( | |
template=qna_template, | |
input_variables=['context', 'question'], | |
verbose=True | |
) | |
# Combine intermediate context template | |
combine_template = "\n".join([ | |
"Given intermediate contexts for a question, generate a final answer.", | |
"If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'", | |
"### Summaries:", | |
"{summaries}", | |
"", | |
"### Question:", | |
"{question}", | |
"", | |
"### Final Answer:", | |
]) | |
combine_prompt = PromptTemplate( | |
template=combine_template, | |
input_variables=['summaries', 'question'], | |
) | |
# Load map-reduce chain for question answering | |
map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce", | |
return_intermediate_steps=True, | |
question_prompt=qna_prompt, | |
combine_prompt=combine_prompt) | |
# Function to preprocess the query (handling long inputs) | |
def preprocess_query(query): | |
if len(query) > 512: # Arbitrary length, adjust based on LLM input limits | |
query = query[:512] + "..." | |
return query | |
# Caching mechanism for frequently asked questions | |
# Cache up to 100 recent queries | |
def answer_query(query): | |
query = preprocess_query(query) | |
try: | |
# Search for similar documents in vector store | |
similar_docs = vector_store.similarity_search(query, k=5) | |
if not similar_docs: | |
return "No relevant documents found." | |
# Run map-reduce chain to get the answer | |
final_answer = map_reduce_chain({ | |
"input_documents": similar_docs, | |
"question": query | |
}, return_only_outputs=True) | |
output_text = final_answer.get('output_text', "No answer generated by the model.") | |
except Exception as e: | |
output_text = f"An error occurred: {str(e)}" | |
return output_text | |
# Gradio Chatbot response function using Hugging Face Inference Client | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for msg in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = msg.choices[0].delta.content | |
response += token | |
yield response | |
# Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |