RAG-Model / app.py
mohamedashraf11's picture
Update app.py
e2fe99d verified
from langchain_community.llms import HuggingFaceHub
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from datasets import load_dataset
import pandas as pd
from functools import lru_cache
import gradio as gr
from huggingface_hub import InferenceClient
# Ensure you have set your Hugging Face API token here or as an environment variable
# Initialize the Hugging Face Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Load dataset
dataset = load_dataset('arbml/LK_Hadith')
df = pd.DataFrame(dataset['train'])
# Filter data
filtered_df = df[df['Arabic_Grade'] != 'ุถุนูŠู']
documents = list(filtered_df['Arabic_Matn'])
metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']]
# Use CharacterTextSplitter
text_splitter = CharacterTextSplitter(chunk_size=10000)
nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas)
# LLM - Using HuggingFaceHub with API token
llm = HuggingFaceHub(repo_id="salmatrafi/acegpt:7b", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN)
# Create an embedding model
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-base", huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN)
docs_text = [doc.page_content for doc in nltk_chunks]
docs_embedding = embeddings.embed_documents(docs_text)
# Create Chroma vector store
vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings)
# Question answering prompt template
qna_template = "\n".join([
"Answer the next question using the provided context.",
"If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'",
"### Context:",
"{context}",
"",
"### Question:",
"{question}",
"",
"### Answer:",
])
qna_prompt = PromptTemplate(
template=qna_template,
input_variables=['context', 'question'],
verbose=True
)
# Combine intermediate context template
combine_template = "\n".join([
"Given intermediate contexts for a question, generate a final answer.",
"If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'",
"### Summaries:",
"{summaries}",
"",
"### Question:",
"{question}",
"",
"### Final Answer:",
])
combine_prompt = PromptTemplate(
template=combine_template,
input_variables=['summaries', 'question'],
)
# Load map-reduce chain for question answering
map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce",
return_intermediate_steps=True,
question_prompt=qna_prompt,
combine_prompt=combine_prompt)
# Function to preprocess the query (handling long inputs)
def preprocess_query(query):
if len(query) > 512: # Arbitrary length, adjust based on LLM input limits
query = query[:512] + "..."
return query
# Caching mechanism for frequently asked questions
@lru_cache(maxsize=100) # Cache up to 100 recent queries
def answer_query(query):
query = preprocess_query(query)
try:
# Search for similar documents in vector store
similar_docs = vector_store.similarity_search(query, k=5)
if not similar_docs:
return "No relevant documents found."
# Run map-reduce chain to get the answer
final_answer = map_reduce_chain({
"input_documents": similar_docs,
"question": query
}, return_only_outputs=True)
output_text = final_answer.get('output_text', "No answer generated by the model.")
except Exception as e:
output_text = f"An error occurred: {str(e)}"
return output_text
# Gradio Chatbot response function using Hugging Face Inference Client
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.content
response += token
yield response
# Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()