File size: 3,762 Bytes
c99bde3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env python
# coding: utf-8

# In[2]:


import pandas as pd
import streamlit as st
import torch
from torch.utils.data import DataLoader ,Dataset
from transformers import AutoTokenizer,BertForQuestionAnswering,AutoModel


# In[3]:


from transformers import AutoTokenizer,BertForQuestionAnswering,AutoModel
model_checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)


# In[4]:


from transformers import DataCollatorWithPadding


# In[5]:


torch.set_default_device('cpu')


# In[6]:


from transformers import BertTokenizer, BertModel


# In[7]:


class bert_compare(torch.nn.Module):
    def __init__ (self):
        super(bert_compare,self).__init__()
        self.bert=BertModel.from_pretrained("bert-base-uncased")
        
        self.Linear=torch.nn.Linear(768,30 )
        self.elu=torch.nn.ELU()
        self.Linear2=torch.nn.Linear(280 ,1 )
        self.cnn1=torch.nn.Conv1d(768,256,kernel_size=2)
        self.cnn2=torch.nn.Conv1d(256,10,kernel_size=2)

        self.relu=torch.nn.ReLU()
    def forward(self,x):
        x=self.bert(**x).last_hidden_state
        x=x.permute(0,2,1)
        x=self.cnn1(x)
        x=self.relu(x)
        x=self.cnn2(x)
        x=torch.nn.Flatten()(x)
        x=self.Linear2(x)
        return x


# In[8]:


model=bert_compare()
optim=torch.optim.AdamW(model.parameters(),lr=5e-5)
loss=torch.nn.BCEWithLogitsLoss()


# In[9]:


def tok(x,y):
        out=tokenizer(x,y, truncation=True, max_length=30,padding='max_length', return_tensors="pt")
        out={key:value for key,value in out.items()}
        return out
h=tok('my name is mohamed','what is your name')    
model(h)


# In[10]:


model=torch.load('Downloads/model9.pth',map_location=torch.device('cpu'))


# In[11]:


word=['my name is mohamed ', "How do I read and find my YouTube comments?" ,"How can I see all my Youtube comments?","How can Internet speed be increased by hacking through DNS?","What is the step by step guide to invest in share market in india?","where is capital of egypt?",'when did you born ','what is your name',"what is capital of egypt",'how old are you']


# In[19]:


import gradio as gr


# In[12]:


def tok(x,y):
        out=tokenizer(x,y, truncation=True, max_length=30,padding='max_length', return_tensors="pt")
        out={key:value for key,value in out.items()}
        return out
for i in range(9):
        r=torch.randint(len(word),size=(1,))
        r2=torch.randint(len(word),size=(1,))
        h=tok(word[r],word[r2])    
        e=model(h)
        ans= 'the same' if  int(torch.sigmoid( e)>=.5) else 'not the same'
        print (f'{word[r]} is {ans} {word[r2]}'  )


# In[32]:


def sentance_calcute(sentance1,sentance2) ->(int,str) :    
        out=tokenizer(sentance1,sentance2, truncation=True, max_length=30,padding='max_length', return_tensors="pt")
        h={key:value for key,value in out.items()}
        e=model(h)
        ans=torch.sigmoid( e)
        ans2='Same' if ans>=.5 else 'Not same'
        return ans,ans2


# In[46]:


input_color = "lightred"  # Change the color of the input fields

iface = gr.Interface(
    fn=sentance_calcute,
    inputs=["text", "text"],
    outputs=["number", "text"],
    layout="horizontal",
    title="Sentence Similarity Checker",
    description="Enter two sentences to check their similarity.",
    examples=[
        ["The sun is in the west.", "The sun goes down in the west."],
        ["Why is biodiversity important for ecosystems?", "She is extremely joyful."],
        ["The cat is sleeping on the chair.", "The cat is napping on the chair."]
       ,["Why is biodiversity important for ecosystems?", "When did the Renaissance period begin?"]
    ],

)

# Launch the interface
iface.launch()


# In[ ]: