Spaces:
Runtime error
Runtime error
mohamedemam
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import re
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from transformers import AutoModelForCausalLM
|
6 |
+
from transformers import BitsAndBytesConfig
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from peft import PeftModel, PeftConfig
|
10 |
+
from transformers import AutoModelForCausalLM
|
11 |
+
# The model that you want to train from the Hugging Face hub
|
12 |
+
import os
|
13 |
+
import torch
|
14 |
+
from datasets import load_dataset
|
15 |
+
from transformers import (
|
16 |
+
AutoModelForCausalLM,
|
17 |
+
AutoTokenizer,
|
18 |
+
BitsAndBytesConfig,
|
19 |
+
HfArgumentParser,
|
20 |
+
TrainingArguments,
|
21 |
+
pipeline,
|
22 |
+
logging,
|
23 |
+
Trainer
|
24 |
+
)
|
25 |
+
from peft import LoraConfig, PeftModel
|
26 |
+
from trl import SFTTrainer
|
27 |
+
model_name ="bigscience/bloomz-7b1"
|
28 |
+
|
29 |
+
# The instruction dataset to use
|
30 |
+
|
31 |
+
# Fine-tuned model name
|
32 |
+
new_model = "bigscience/bloomz-7b1"
|
33 |
+
# LoRA attention dimension
|
34 |
+
lora_r = 16
|
35 |
+
lora_alpha = 16
|
36 |
+
|
37 |
+
# Dropout probability for LoRA layers
|
38 |
+
lora_dropout = 0.05
|
39 |
+
use_4bit = True
|
40 |
+
|
41 |
+
# Compute dtype for 4-bit base models
|
42 |
+
bnb_4bit_compute_dtype = "float16"
|
43 |
+
|
44 |
+
# Quantization type (fp4 or nf4)
|
45 |
+
bnb_4bit_quant_type = "nf4"
|
46 |
+
|
47 |
+
use_nested_quant = False
|
48 |
+
|
49 |
+
output_dir = "./results"
|
50 |
+
|
51 |
+
# Number of training epochs
|
52 |
+
num_train_epochs = 1
|
53 |
+
fp16 = False
|
54 |
+
bf16 = False
|
55 |
+
|
56 |
+
per_device_train_batch_size =1
|
57 |
+
|
58 |
+
per_device_eval_batch_size = 4
|
59 |
+
|
60 |
+
gradient_accumulation_steps = 8
|
61 |
+
|
62 |
+
gradient_checkpointing = True
|
63 |
+
|
64 |
+
max_grad_norm = 0.3
|
65 |
+
|
66 |
+
learning_rate = 5e-5
|
67 |
+
|
68 |
+
weight_decay = 0.001
|
69 |
+
|
70 |
+
optim = "paged_adamw_8bit"
|
71 |
+
|
72 |
+
lr_scheduler_type = "constant"
|
73 |
+
|
74 |
+
max_steps = -1
|
75 |
+
warmup_ratio = 0.03
|
76 |
+
group_by_length = True
|
77 |
+
|
78 |
+
save_steps = 100
|
79 |
+
|
80 |
+
logging_steps = 25
|
81 |
+
|
82 |
+
max_seq_length = False
|
83 |
+
packing = False
|
84 |
+
#device_map = {"": 0}
|
85 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
86 |
+
|
87 |
+
bnb_config = BitsAndBytesConfig(
|
88 |
+
load_in_4bit=use_4bit,
|
89 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
90 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
91 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Check GPU compatibility with bfloat16
|
95 |
+
if compute_dtype == torch.float16 and use_4bit:
|
96 |
+
major, _ = torch.cuda.get_device_capability()
|
97 |
+
if major >= 8:
|
98 |
+
print("=" * 80)
|
99 |
+
print("Your GPU supports bfloat16: accelerate training with bf16=True")
|
100 |
+
print("=" * 80)
|
101 |
+
|
102 |
+
# Load base model
|
103 |
+
config = PeftConfig.from_pretrained("mohamedemam/essay_checker")
|
104 |
+
model = AutoModelForCausalLM.from_pretrained("nfaheem/Marcoroni-7b-DPO-Merge", quantization_config=bnb_config)
|
105 |
+
model = PeftModel.from_pretrained(model, "mohamedemam/essay_checker")
|
106 |
+
model.eval()
|
107 |
+
def chat_Format(context,quetion,answer):
|
108 |
+
return "Instruction:\n check answer is true or false of next quetion using context below:\n"+"context: "+context+"\nquetion:"+quetion+ f".\n#student answer: "+answer+".\n#response:"
|
109 |
+
# Create a Wikipedia API instance
|
110 |
+
|
111 |
+
|
112 |
+
# Function to generate questions and answers with configurable parameters
|
113 |
+
def generate_qa(context,quetion,answer,max_new_token):
|
114 |
+
input_text = chat_Format(context,quetion,answer)
|
115 |
+
a = tokenizer(text=input_text, return_tensors='pt')
|
116 |
+
|
117 |
+
# Generate with configurable parameters
|
118 |
+
output = model.generate(input_ids=a['input_ids'],attention_mask=w['attention_mask'],
|
119 |
+
max_new_tokens=max_new_token
|
120 |
+
)
|
121 |
+
#
|
122 |
+
generated_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
123 |
+
|
124 |
+
formatted_output = "\n\n".join(set(generated_text))
|
125 |
+
return formatted_output
|
126 |
+
iface = gr.Interface(
|
127 |
+
fn=generate_qa,
|
128 |
+
inputs=[ "text", "text2", "text3",
|
129 |
+
|
130 |
+
gr.inputs.Slider(minimum=1, maximum=100, default=3, step=1, label="max token"),
|
131 |
+
|
132 |
+
|
133 |
+
],theme="red-black",
|
134 |
+
outputs=gr.outputs.Textbox(label="Generated Output"),
|
135 |
+
title="check answers",
|
136 |
+
description="put you context ",
|
137 |
+
)
|
138 |
+
# Launch the interface
|
139 |
+
iface.launch()
|