mohammed's picture
Create app.py
db12eeb verified
# Load model directly
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torchaudio
import streamlit as st
processor = AutoProcessor.from_pretrained("mohammed/whisper-small-arabic-cv-11")
model = AutoModelForSpeechSeq2Seq.from_pretrained("mohammed/whisper-small-arabic-cv-11")
st.title("Arabic Whisper model v2")
audio_file = st.file_uploader("Upload audio", type=["mp3", "wav", "m4a"])
if st.sidebar.button("Trascribe Audio"):
if audio_file is not None:
st.sidebar.success("Transcribing audio") # on success audio file
audio_tensor, sample_rate = torchaudio.load(audio_file)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
audio_tensor = resampler(audio_tensor)
audio_np = audio_tensor.squeeze().numpy()
# processing audio
inputs = processor(audio_np, sample_rate=16000, return_tensors="pt")
# generating transcript
generated_ids = model.generate(inputs["input_features"])
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
# display transcription
st.sidebar.success("Transcription is complete")
st.text(transcription[0])
else:
st.sidebar.error("Please upload a valid audio file")