mojtaba-nafez's picture
add initial files to deploy
2fa2727
import os
import cv2
import torch
import albumentations as A
import config as CFG
class PoemTextDataset(torch.utils.data.Dataset):
"""
torch Dataset for PoemTextModel.
...
Attributes:
-----------
dataset_dict : list of dict
dataset containing poem-text pair with ids
encoded_poems : dict
output of tokenizer for beyts found in dataset_dict. max_length spedified in configs.
padding and truncation set to True to be truncated or padded to max length.
encoded_texts : dict
output of tokenizer for texts found in dataset_dict. max_length spedified in configs.
padding and truncation set to True to be truncated or padded to max length.
Methods:
--------
__get_item__(idx)
returns item with index idx.
__len__()
represents length of dataset
"""
def __init__(self, dataset_dict):
"""
Init class, save dataset_dict and calculate output of tokenizers for each text and poem using their corresponding tokenizers.
The tokenizers are chosen based on configs.
Parameters:
-----------
dataset_dict: list of dict
a list containing dictionaries which have "beyt", "text" and "id" keys.
"""
self.dataset_dict = dataset_dict
poem_tokenizer = CFG.tokenizers[CFG.poem_encoder_model].from_pretrained(CFG.poem_tokenizer)
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
self.encoded_poems = poem_tokenizer(
[item['beyt'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.poems_max_length
)
self.encoded_texts = text_tokenizer(
[item['text'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.text_max_length
)
def __getitem__(self, idx):
"""
returns a dict having data with index idx. the dict is used as an input to the PoemTextModel.
Parameters:
-----------
idx: int
index of the data to get
Returns:
--------
item: dict
a dict having tokenizers' output for poem and text, and id of the data with index idx
"""
item = {}
item["beyt"] = {
key: torch.tensor(values[idx])
for key, values in self.encoded_poems.items()
}
item["text"] = {
key: torch.tensor(values[idx])
for key, values in self.encoded_texts.items()
}
item['id'] = self.dataset_dict[idx]['id']
return item
def __len__(self):
"""
returns the length of the dataset
Returns:
--------
length: int
length using the length of dataset_dict we saved in class
"""
return len(self.dataset_dict)
class CLIPDataset(torch.utils.data.Dataset):
"""
torch Dataset for CLIPModel.
...
Attributes:
-----------
dataset_dict : list of dict
dataset containing poem-image or text-image pair with ids
encoded : dict
output of tokenizer for beyts/texts found in dataset_dict. max_length spedified in configs.
padding and truncation set to True to be truncated or padded to max length.
transforms: albumentations.BasicTransform
transforms to apply to the images
Methods:
--------
__get_item__(idx)
returns item with index idx.
__len__()
represents length of dataset
"""
def __init__(self, dataset_dict, transforms, is_image_poem_pair=True):
"""
Init class, save dataset_dict and transforms and calculate output of tokenizers for each text and poem using their corresponding tokenizers.
The tokenizers are chosen based on configs.
Parameters:
-----------
dataset_dict: list of dict
a list containing dictionaries which have "beyt", "text" and "id" keys.
transforms: albumentations.BasicTransform
transforms to apply to the images
is_image_poem_pair: Bool, optional
if set to False, dataset has text-image pairs and must use the corresponding text tokenizer.
else has poem-images pairs and uses the poem tokenizer.
"""
self.dataset_dict = dataset_dict
# using the poem tokenizer to encode poems or text tokenizer to encode text (based on configs).
if is_image_poem_pair:
poem_tokenizer = CFG.tokenizers[CFG.poem_encoder_model].from_pretrained(CFG.poem_tokenizer)
self.encoded = poem_tokenizer(
[item['beyt'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.poems_max_length
)
else:
text_tokenizer = CFG.tokenizers[CFG.text_encoder_model].from_pretrained(CFG.text_tokenizer)
self.encoded = text_tokenizer(
[item['text'] for item in dataset_dict], padding=True, truncation=True, max_length=CFG.text_max_length
)
self.transforms = transforms
def __getitem__(self, idx):
"""
returns a dict having data with index idx. the dict is used as an input to the CLIPModel.
Parameters:
-----------
idx: int
index of the data to get
Returns:
--------
item: dict
a dict having tokenizers' output for poem and text, and id of the data with index idx
"""
item = {}
# getting text from encoded texts
item["text"] = {
key: torch.tensor(values[idx])
for key, values in self.encoded.items()
}
# opening the image
image = cv2.imread(f"{CFG.image_path}{self.dataset_dict[idx]['image']}")
# converting BGR to RGB for transforms
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# apply transforms
image = self.transforms(image=image)['image']
# permute dims of image
item['image'] = torch.tensor(image).permute(2, 0, 1).float()
return item
def __len__(self):
"""
returns the length of the dataset
Returns:
--------
length: int
length using the length of dataset_dict we saved in class
"""
return len(self.dataset_dict)
def get_transforms(mode="train"):
"""
returns transforms to use on image based on mode
Parameters:
-----------
mode: str, optional
to distinguish between train and val/test transforms (here they are the same!)
Returns:
--------
item: dict
a dict having tokenizers' output for poem and text, and id of the data with index idx
"""
if mode == "train":
return A.Compose(
[
A.Resize(CFG.size, CFG.size, always_apply=True), # resizing image to CFG.size
A.Normalize(max_pixel_value=255.0, always_apply=True), # normalizing image values
]
)
else:
return A.Compose(
[
A.Resize(CFG.size, CFG.size, always_apply=True), # resizing image to CFG.size
A.Normalize(max_pixel_value=255.0, always_apply=True), # normalizing image values
]
)