Spaces:
Running
faster (testing)
Browse filesmade faster by
1. Model Loading and Device Placement: The model (pipe) is now loaded only once outside the generate function. This saves significant time on each generation.
2. Resolution Binning: Enabled by default in the options, this technique speeds up generation and reduces VRAM usage, especially for larger images.
3. Torch Compile (Experimental): Added the option to use torch.compile which might further improve performance on compatible hardware. This is highly dependent on your setup.
4. CPU Offloading (Experimental): Allows offloading parts of the model to CPU RAM, potentially enabling larger image generation or batch sizes if your GPU VRAM is limited.
5. Batch Generation: Added the ability to generate multiple images in a single pass (controlled by BATCH_SIZE environment variable or defaulting to 1). This significantly reduces overhead when generating more than one image.
@@ -10,27 +10,33 @@ import spaces
|
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
MAX_SEED = np.iinfo(np.int32).max
|
17 |
-
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
18 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
19 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
20 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
|
21 |
|
|
|
22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
26 |
-
"sd-community/sdxl-flash",
|
27 |
-
torch_dtype=torch.float16,
|
28 |
-
use_safetensors=True,
|
29 |
-
add_watermarker=False
|
30 |
-
)
|
31 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
32 |
-
pipe.to("cuda")
|
33 |
-
|
34 |
|
35 |
def save_image(img):
|
36 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -53,51 +59,60 @@ def generate(
|
|
53 |
guidance_scale: float = 3,
|
54 |
num_inference_steps: int = 30,
|
55 |
randomize_seed: bool = False,
|
56 |
-
use_resolution_binning: bool = True,
|
|
|
57 |
progress=gr.Progress(track_tqdm=True),
|
58 |
):
|
59 |
-
pipe.to(device)
|
60 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
61 |
-
generator = torch.Generator().manual_seed(seed)
|
62 |
|
|
|
63 |
options = {
|
64 |
-
"prompt":prompt,
|
65 |
-
"negative_prompt":negative_prompt,
|
66 |
-
"width":width,
|
67 |
-
"height":height,
|
68 |
-
"guidance_scale":guidance_scale,
|
69 |
-
"num_inference_steps":num_inference_steps,
|
70 |
-
"generator":generator,
|
71 |
-
"
|
72 |
-
"output_type":"pil",
|
73 |
-
|
74 |
}
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
image_paths = [save_image(img) for img in images]
|
79 |
return image_paths, seed
|
80 |
|
81 |
-
|
82 |
examples = [
|
83 |
"a cat eating a piece of cheese",
|
84 |
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
|
85 |
"Ironman VS Hulk, ultrarealistic",
|
86 |
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
|
87 |
-
"An alien holding sign board
|
88 |
"Kids going to school, Anime style"
|
89 |
]
|
90 |
|
91 |
css = '''
|
92 |
-
.gradio-container{max-width:
|
93 |
h1{text-align:center}
|
94 |
footer {
|
95 |
visibility: hidden
|
96 |
}
|
97 |
'''
|
|
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
-
gr.Markdown("""# SDXL Flash
|
100 |
-
### First Image processing takes time then images generate faster.""")
|
101 |
with gr.Group():
|
102 |
with gr.Row():
|
103 |
prompt = gr.Text(
|
@@ -108,8 +123,15 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
container=False,
|
109 |
)
|
110 |
run_button = gr.Button("Run", scale=0)
|
111 |
-
result = gr.Gallery(label="Result", columns=
|
112 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
with gr.Row():
|
114 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
115 |
negative_prompt = gr.Text(
|
@@ -164,7 +186,6 @@ with gr.Blocks(css=css) as demo:
|
|
164 |
inputs=prompt,
|
165 |
outputs=[result, seed],
|
166 |
fn=generate,
|
167 |
-
cache_examples=CACHE_EXAMPLES,
|
168 |
)
|
169 |
|
170 |
use_negative_prompt.change(
|
@@ -191,6 +212,7 @@ with gr.Blocks(css=css) as demo:
|
|
191 |
guidance_scale,
|
192 |
num_inference_steps,
|
193 |
randomize_seed,
|
|
|
194 |
],
|
195 |
outputs=[result, seed],
|
196 |
api_name="run",
|
|
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
13 |
+
# Use environment variables for flexibility
|
14 |
+
MODEL_ID = os.getenv("MODEL_ID", "sd-community/sdxl-flash")
|
|
|
|
|
|
|
15 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
16 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
17 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
18 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once
|
19 |
|
20 |
+
# Determine device and load model outside of function for efficiency
|
21 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
23 |
+
MODEL_ID,
|
24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
25 |
+
use_safetensors=True,
|
26 |
+
add_watermarker=False,
|
27 |
+
variant="fp16" if torch.cuda.is_available() else None,
|
28 |
+
).to(device)
|
29 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
30 |
+
|
31 |
+
# Torch compile for potential speedup (experimental)
|
32 |
+
if USE_TORCH_COMPILE:
|
33 |
+
pipe.compile()
|
34 |
+
|
35 |
+
# CPU offloading for larger RAM capacity (experimental)
|
36 |
+
if ENABLE_CPU_OFFLOAD:
|
37 |
+
pipe.enable_model_cpu_offload()
|
38 |
|
39 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
def save_image(img):
|
42 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
59 |
guidance_scale: float = 3,
|
60 |
num_inference_steps: int = 30,
|
61 |
randomize_seed: bool = False,
|
62 |
+
use_resolution_binning: bool = True,
|
63 |
+
num_images: int = 1, # Number of images to generate
|
64 |
progress=gr.Progress(track_tqdm=True),
|
65 |
):
|
|
|
66 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
67 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
68 |
|
69 |
+
# Improved options handling
|
70 |
options = {
|
71 |
+
"prompt": [prompt] * num_images,
|
72 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
73 |
+
"width": width,
|
74 |
+
"height": height,
|
75 |
+
"guidance_scale": guidance_scale,
|
76 |
+
"num_inference_steps": num_inference_steps,
|
77 |
+
"generator": generator,
|
78 |
+
"output_type": "pil",
|
|
|
|
|
79 |
}
|
80 |
+
|
81 |
+
# Use resolution binning for faster generation with less VRAM usage
|
82 |
+
if use_resolution_binning:
|
83 |
+
options["use_resolution_binning"] = True
|
84 |
+
|
85 |
+
# Generate images potentially in batches
|
86 |
+
images = []
|
87 |
+
for i in range(0, num_images, BATCH_SIZE):
|
88 |
+
batch_options = options.copy()
|
89 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
90 |
+
if "negative_prompt" in batch_options:
|
91 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
92 |
+
images.extend(pipe(**batch_options).images)
|
93 |
|
94 |
image_paths = [save_image(img) for img in images]
|
95 |
return image_paths, seed
|
96 |
|
|
|
97 |
examples = [
|
98 |
"a cat eating a piece of cheese",
|
99 |
"a ROBOT riding a BLUE horse on Mars, photorealistic, 4k",
|
100 |
"Ironman VS Hulk, ultrarealistic",
|
101 |
"Astronaut in a jungle, cold color palette, oil pastel, detailed, 8k",
|
102 |
+
"An alien holding a sign board containing the word 'Flash', futuristic, neonpunk",
|
103 |
"Kids going to school, Anime style"
|
104 |
]
|
105 |
|
106 |
css = '''
|
107 |
+
.gradio-container{max-width: 700px !important}
|
108 |
h1{text-align:center}
|
109 |
footer {
|
110 |
visibility: hidden
|
111 |
}
|
112 |
'''
|
113 |
+
|
114 |
with gr.Blocks(css=css) as demo:
|
115 |
+
gr.Markdown("""# SDXL Flash""")
|
|
|
116 |
with gr.Group():
|
117 |
with gr.Row():
|
118 |
prompt = gr.Text(
|
|
|
123 |
container=False,
|
124 |
)
|
125 |
run_button = gr.Button("Run", scale=0)
|
126 |
+
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
127 |
with gr.Accordion("Advanced options", open=False):
|
128 |
+
num_images = gr.Slider(
|
129 |
+
label="Number of Images",
|
130 |
+
minimum=1,
|
131 |
+
maximum=4,
|
132 |
+
step=1,
|
133 |
+
value=1,
|
134 |
+
)
|
135 |
with gr.Row():
|
136 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
137 |
negative_prompt = gr.Text(
|
|
|
186 |
inputs=prompt,
|
187 |
outputs=[result, seed],
|
188 |
fn=generate,
|
|
|
189 |
)
|
190 |
|
191 |
use_negative_prompt.change(
|
|
|
212 |
guidance_scale,
|
213 |
num_inference_steps,
|
214 |
randomize_seed,
|
215 |
+
num_images
|
216 |
],
|
217 |
outputs=[result, seed],
|
218 |
api_name="run",
|