Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,25 +10,16 @@ import spaces
|
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
13 |
-
def save_image(img):
|
14 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
15 |
-
img.save(unique_name)
|
16 |
-
return unique_name
|
17 |
-
|
18 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
19 |
-
if randomize_seed:
|
20 |
-
seed = random.randint(0, MAX_SEED)
|
21 |
-
return seed
|
22 |
-
|
23 |
-
MAX_SEED = np.iinfo(np.int32).max
|
24 |
-
|
25 |
if not torch.cuda.is_available():
|
26 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
27 |
|
28 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
ENABLE_CPU_OFFLOAD = 0
|
32 |
|
33 |
if torch.cuda.is_available():
|
34 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
@@ -38,14 +29,23 @@ if torch.cuda.is_available():
|
|
38 |
add_watermarker=False
|
39 |
)
|
40 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
41 |
-
|
42 |
-
|
43 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
44 |
pipe.set_adapters("dalle")
|
45 |
|
46 |
pipe.to("cuda")
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def generate(
|
50 |
prompt: str,
|
51 |
negative_prompt: str = "",
|
@@ -54,30 +54,32 @@ def generate(
|
|
54 |
width: int = 1024,
|
55 |
height: int = 1024,
|
56 |
guidance_scale: float = 3,
|
|
|
57 |
randomize_seed: bool = False,
|
|
|
58 |
progress=gr.Progress(track_tqdm=True),
|
59 |
):
|
60 |
-
|
61 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
if not use_negative_prompt:
|
64 |
-
negative_prompt = "" # type: ignore
|
65 |
-
|
66 |
-
images = pipe(
|
67 |
-
prompt=prompt,
|
68 |
-
negative_prompt=negative_prompt,
|
69 |
-
width=width,
|
70 |
-
height=height,
|
71 |
-
guidance_scale=guidance_scale,
|
72 |
-
num_inference_steps=25,
|
73 |
-
num_images_per_prompt=1,
|
74 |
-
cross_attention_kwargs={"scale": 0.65},
|
75 |
-
output_type="pil",
|
76 |
-
).images
|
77 |
image_paths = [save_image(img) for img in images]
|
78 |
-
print(image_paths)
|
79 |
return image_paths, seed
|
80 |
-
|
81 |
|
82 |
|
83 |
examples = [
|
@@ -110,48 +112,55 @@ with gr.Blocks(css=css) as demo:
|
|
110 |
container=False,
|
111 |
)
|
112 |
run_button = gr.Button("Run", scale=0)
|
113 |
-
result = gr.Gallery(label="Result", columns=1
|
114 |
with gr.Accordion("Advanced options", open=False):
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
124 |
seed = gr.Slider(
|
125 |
label="Seed",
|
126 |
minimum=0,
|
127 |
maximum=MAX_SEED,
|
128 |
step=1,
|
129 |
value=0,
|
130 |
-
visible=True
|
131 |
)
|
132 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
133 |
with gr.Row(visible=True):
|
134 |
width = gr.Slider(
|
135 |
label="Width",
|
136 |
minimum=512,
|
137 |
-
maximum=
|
138 |
-
step=
|
139 |
value=1024,
|
140 |
)
|
141 |
height = gr.Slider(
|
142 |
label="Height",
|
143 |
minimum=512,
|
144 |
-
maximum=
|
145 |
-
step=
|
146 |
value=1024,
|
147 |
)
|
148 |
with gr.Row():
|
149 |
guidance_scale = gr.Slider(
|
150 |
label="Guidance Scale",
|
151 |
minimum=0.1,
|
152 |
-
maximum=
|
153 |
step=0.1,
|
154 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
)
|
156 |
|
157 |
gr.Examples(
|
@@ -159,7 +168,7 @@ with gr.Blocks(css=css) as demo:
|
|
159 |
inputs=prompt,
|
160 |
outputs=[result, seed],
|
161 |
fn=generate,
|
162 |
-
cache_examples=
|
163 |
)
|
164 |
|
165 |
use_negative_prompt.change(
|
@@ -184,11 +193,12 @@ with gr.Blocks(css=css) as demo:
|
|
184 |
width,
|
185 |
height,
|
186 |
guidance_scale,
|
|
|
187 |
randomize_seed,
|
188 |
],
|
189 |
outputs=[result, seed],
|
190 |
-
api_name="run"
|
191 |
)
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
-
demo.queue(max_size=20).launch(
|
|
|
10 |
import torch
|
11 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
if not torch.cuda.is_available():
|
14 |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
15 |
|
16 |
MAX_SEED = np.iinfo(np.int32).max
|
17 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
|
18 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
19 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
20 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
21 |
|
22 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
23 |
|
24 |
if torch.cuda.is_available():
|
25 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
|
29 |
add_watermarker=False
|
30 |
)
|
31 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
32 |
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
33 |
pipe.set_adapters("dalle")
|
34 |
|
35 |
pipe.to("cuda")
|
36 |
|
37 |
+
|
38 |
+
def save_image(img):
|
39 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
40 |
+
img.save(unique_name)
|
41 |
+
return unique_name
|
42 |
+
|
43 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
44 |
+
if randomize_seed:
|
45 |
+
seed = random.randint(0, MAX_SEED)
|
46 |
+
return seed
|
47 |
+
|
48 |
+
@spaces.GPU(duration=30, queue=False)
|
49 |
def generate(
|
50 |
prompt: str,
|
51 |
negative_prompt: str = "",
|
|
|
54 |
width: int = 1024,
|
55 |
height: int = 1024,
|
56 |
guidance_scale: float = 3,
|
57 |
+
num_inference_steps: int = 10,
|
58 |
randomize_seed: bool = False,
|
59 |
+
use_resolution_binning: bool = True,
|
60 |
progress=gr.Progress(track_tqdm=True),
|
61 |
):
|
62 |
+
pipe.to(device)
|
63 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
64 |
+
generator = torch.Generator().manual_seed(seed)
|
65 |
+
|
66 |
+
options = {
|
67 |
+
"prompt":prompt,
|
68 |
+
"negative_prompt":negative_prompt,
|
69 |
+
"width":width,
|
70 |
+
"height":height,
|
71 |
+
"guidance_scale":guidance_scale,
|
72 |
+
"num_inference_steps":num_inference_steps,
|
73 |
+
"generator":generator,
|
74 |
+
"use_resolution_binning":use_resolution_binning,
|
75 |
+
"output_type":"pil",
|
76 |
+
|
77 |
+
}
|
78 |
+
|
79 |
+
images = pipe(**options).images
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
image_paths = [save_image(img) for img in images]
|
|
|
82 |
return image_paths, seed
|
|
|
83 |
|
84 |
|
85 |
examples = [
|
|
|
112 |
container=False,
|
113 |
)
|
114 |
run_button = gr.Button("Run", scale=0)
|
115 |
+
result = gr.Gallery(label="Result", columns=1)
|
116 |
with gr.Accordion("Advanced options", open=False):
|
117 |
+
with gr.Row():
|
118 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
119 |
+
negative_prompt = gr.Text(
|
120 |
+
label="Negative prompt",
|
121 |
+
max_lines=5,
|
122 |
+
lines=4,
|
123 |
+
placeholder="Enter a negative prompt",
|
124 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
|
125 |
+
visible=True,
|
126 |
+
)
|
127 |
seed = gr.Slider(
|
128 |
label="Seed",
|
129 |
minimum=0,
|
130 |
maximum=MAX_SEED,
|
131 |
step=1,
|
132 |
value=0,
|
|
|
133 |
)
|
134 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
135 |
with gr.Row(visible=True):
|
136 |
width = gr.Slider(
|
137 |
label="Width",
|
138 |
minimum=512,
|
139 |
+
maximum=MAX_IMAGE_SIZE,
|
140 |
+
step=64,
|
141 |
value=1024,
|
142 |
)
|
143 |
height = gr.Slider(
|
144 |
label="Height",
|
145 |
minimum=512,
|
146 |
+
maximum=MAX_IMAGE_SIZE,
|
147 |
+
step=64,
|
148 |
value=1024,
|
149 |
)
|
150 |
with gr.Row():
|
151 |
guidance_scale = gr.Slider(
|
152 |
label="Guidance Scale",
|
153 |
minimum=0.1,
|
154 |
+
maximum=6,
|
155 |
step=0.1,
|
156 |
+
value=3.0,
|
157 |
+
)
|
158 |
+
num_inference_steps = gr.Slider(
|
159 |
+
label="Number of inference steps",
|
160 |
+
minimum=1,
|
161 |
+
maximum=15,
|
162 |
+
step=1,
|
163 |
+
value=8,
|
164 |
)
|
165 |
|
166 |
gr.Examples(
|
|
|
168 |
inputs=prompt,
|
169 |
outputs=[result, seed],
|
170 |
fn=generate,
|
171 |
+
cache_examples=CACHE_EXAMPLES,
|
172 |
)
|
173 |
|
174 |
use_negative_prompt.change(
|
|
|
193 |
width,
|
194 |
height,
|
195 |
guidance_scale,
|
196 |
+
num_inference_steps,
|
197 |
randomize_seed,
|
198 |
],
|
199 |
outputs=[result, seed],
|
200 |
+
api_name="run",
|
201 |
)
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
+
demo.queue(max_size=20).launch()
|