KingNish commited on
Commit
f5e7ff1
·
verified ·
1 Parent(s): 30497b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -54
app.py CHANGED
@@ -10,25 +10,16 @@ import spaces
10
  import torch
11
  from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
12
 
13
- def save_image(img):
14
- unique_name = str(uuid.uuid4()) + ".png"
15
- img.save(unique_name)
16
- return unique_name
17
-
18
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
19
- if randomize_seed:
20
- seed = random.randint(0, MAX_SEED)
21
- return seed
22
-
23
- MAX_SEED = np.iinfo(np.int32).max
24
-
25
  if not torch.cuda.is_available():
26
  DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
27
 
28
  MAX_SEED = np.iinfo(np.int32).max
 
 
 
 
29
 
30
- USE_TORCH_COMPILE = 0
31
- ENABLE_CPU_OFFLOAD = 0
32
 
33
  if torch.cuda.is_available():
34
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -38,14 +29,23 @@ if torch.cuda.is_available():
38
  add_watermarker=False
39
  )
40
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
41
-
42
-
43
  pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
44
  pipe.set_adapters("dalle")
45
 
46
  pipe.to("cuda")
47
 
48
- @spaces.GPU(enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
49
  def generate(
50
  prompt: str,
51
  negative_prompt: str = "",
@@ -54,30 +54,32 @@ def generate(
54
  width: int = 1024,
55
  height: int = 1024,
56
  guidance_scale: float = 3,
 
57
  randomize_seed: bool = False,
 
58
  progress=gr.Progress(track_tqdm=True),
59
  ):
60
-
61
  seed = int(randomize_seed_fn(seed, randomize_seed))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if not use_negative_prompt:
64
- negative_prompt = "" # type: ignore
65
-
66
- images = pipe(
67
- prompt=prompt,
68
- negative_prompt=negative_prompt,
69
- width=width,
70
- height=height,
71
- guidance_scale=guidance_scale,
72
- num_inference_steps=25,
73
- num_images_per_prompt=1,
74
- cross_attention_kwargs={"scale": 0.65},
75
- output_type="pil",
76
- ).images
77
  image_paths = [save_image(img) for img in images]
78
- print(image_paths)
79
  return image_paths, seed
80
-
81
 
82
 
83
  examples = [
@@ -110,48 +112,55 @@ with gr.Blocks(css=css) as demo:
110
  container=False,
111
  )
112
  run_button = gr.Button("Run", scale=0)
113
- result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
114
  with gr.Accordion("Advanced options", open=False):
115
- use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
116
- negative_prompt = gr.Text(
117
- label="Negative prompt",
118
- lines=4,
119
- max_lines=6,
120
- value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
121
- placeholder="Enter a negative prompt",
122
- visible=True,
123
- )
 
124
  seed = gr.Slider(
125
  label="Seed",
126
  minimum=0,
127
  maximum=MAX_SEED,
128
  step=1,
129
  value=0,
130
- visible=True
131
  )
132
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
133
  with gr.Row(visible=True):
134
  width = gr.Slider(
135
  label="Width",
136
  minimum=512,
137
- maximum=2048,
138
- step=8,
139
  value=1024,
140
  )
141
  height = gr.Slider(
142
  label="Height",
143
  minimum=512,
144
- maximum=2048,
145
- step=8,
146
  value=1024,
147
  )
148
  with gr.Row():
149
  guidance_scale = gr.Slider(
150
  label="Guidance Scale",
151
  minimum=0.1,
152
- maximum=20.0,
153
  step=0.1,
154
- value=6,
 
 
 
 
 
 
 
155
  )
156
 
157
  gr.Examples(
@@ -159,7 +168,7 @@ with gr.Blocks(css=css) as demo:
159
  inputs=prompt,
160
  outputs=[result, seed],
161
  fn=generate,
162
- cache_examples=False,
163
  )
164
 
165
  use_negative_prompt.change(
@@ -184,11 +193,12 @@ with gr.Blocks(css=css) as demo:
184
  width,
185
  height,
186
  guidance_scale,
 
187
  randomize_seed,
188
  ],
189
  outputs=[result, seed],
190
- api_name="run"
191
  )
192
 
193
  if __name__ == "__main__":
194
- demo.queue(max_size=20).launch(show_api=False, debug=False)
 
10
  import torch
11
  from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
12
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  if not torch.cuda.is_available():
14
  DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
15
 
16
  MAX_SEED = np.iinfo(np.int32).max
17
+ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"
18
+ MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
19
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
20
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
21
 
22
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
23
 
24
  if torch.cuda.is_available():
25
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
29
  add_watermarker=False
30
  )
31
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
 
 
32
  pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
33
  pipe.set_adapters("dalle")
34
 
35
  pipe.to("cuda")
36
 
37
+
38
+ def save_image(img):
39
+ unique_name = str(uuid.uuid4()) + ".png"
40
+ img.save(unique_name)
41
+ return unique_name
42
+
43
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
44
+ if randomize_seed:
45
+ seed = random.randint(0, MAX_SEED)
46
+ return seed
47
+
48
+ @spaces.GPU(duration=30, queue=False)
49
  def generate(
50
  prompt: str,
51
  negative_prompt: str = "",
 
54
  width: int = 1024,
55
  height: int = 1024,
56
  guidance_scale: float = 3,
57
+ num_inference_steps: int = 10,
58
  randomize_seed: bool = False,
59
+ use_resolution_binning: bool = True,
60
  progress=gr.Progress(track_tqdm=True),
61
  ):
62
+ pipe.to(device)
63
  seed = int(randomize_seed_fn(seed, randomize_seed))
64
+ generator = torch.Generator().manual_seed(seed)
65
+
66
+ options = {
67
+ "prompt":prompt,
68
+ "negative_prompt":negative_prompt,
69
+ "width":width,
70
+ "height":height,
71
+ "guidance_scale":guidance_scale,
72
+ "num_inference_steps":num_inference_steps,
73
+ "generator":generator,
74
+ "use_resolution_binning":use_resolution_binning,
75
+ "output_type":"pil",
76
+
77
+ }
78
+
79
+ images = pipe(**options).images
80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  image_paths = [save_image(img) for img in images]
 
82
  return image_paths, seed
 
83
 
84
 
85
  examples = [
 
112
  container=False,
113
  )
114
  run_button = gr.Button("Run", scale=0)
115
+ result = gr.Gallery(label="Result", columns=1)
116
  with gr.Accordion("Advanced options", open=False):
117
+ with gr.Row():
118
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
119
+ negative_prompt = gr.Text(
120
+ label="Negative prompt",
121
+ max_lines=5,
122
+ lines=4,
123
+ placeholder="Enter a negative prompt",
124
+ value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW",
125
+ visible=True,
126
+ )
127
  seed = gr.Slider(
128
  label="Seed",
129
  minimum=0,
130
  maximum=MAX_SEED,
131
  step=1,
132
  value=0,
 
133
  )
134
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
135
  with gr.Row(visible=True):
136
  width = gr.Slider(
137
  label="Width",
138
  minimum=512,
139
+ maximum=MAX_IMAGE_SIZE,
140
+ step=64,
141
  value=1024,
142
  )
143
  height = gr.Slider(
144
  label="Height",
145
  minimum=512,
146
+ maximum=MAX_IMAGE_SIZE,
147
+ step=64,
148
  value=1024,
149
  )
150
  with gr.Row():
151
  guidance_scale = gr.Slider(
152
  label="Guidance Scale",
153
  minimum=0.1,
154
+ maximum=6,
155
  step=0.1,
156
+ value=3.0,
157
+ )
158
+ num_inference_steps = gr.Slider(
159
+ label="Number of inference steps",
160
+ minimum=1,
161
+ maximum=15,
162
+ step=1,
163
+ value=8,
164
  )
165
 
166
  gr.Examples(
 
168
  inputs=prompt,
169
  outputs=[result, seed],
170
  fn=generate,
171
+ cache_examples=CACHE_EXAMPLES,
172
  )
173
 
174
  use_negative_prompt.change(
 
193
  width,
194
  height,
195
  guidance_scale,
196
+ num_inference_steps,
197
  randomize_seed,
198
  ],
199
  outputs=[result, seed],
200
+ api_name="run",
201
  )
202
 
203
  if __name__ == "__main__":
204
+ demo.queue(max_size=20).launch()