lfoppiano commited on
Commit
0cce39a
·
1 Parent(s): f8f1a5e
Files changed (1) hide show
  1. README.md +3 -6
README.md CHANGED
@@ -16,9 +16,11 @@ license: apache-2.0
16
 
17
  <img src="https://github.com/lfoppiano/document-qa/assets/15426/f0a04a86-96b3-406e-8303-904b93f00015" width=300 align="right" />
18
 
 
 
19
  ## Introduction
20
 
21
- Question/Answering on scientific documents using LLMs: ChatGPT-3.5-turbo, Mistral-7b-instruct and Zephyr-7b-beta.
22
  The streamlit application demonstrates the implementation of a RAG (Retrieval Augmented Generation) on scientific documents, that we are developing at NIMS (National Institute for Materials Science), in Tsukuba, Japan.
23
  Different to most of the projects, we focus on scientific articles.
24
  We target only the full-text using [Grobid](https://github.com/kermitt2/grobid) which provides cleaner results than the raw PDF2Text converter (which is comparable with most of other solutions).
@@ -29,11 +31,6 @@ The conversation is kept in memory by a buffered sliding window memory (top 4 mo
29
 
30
  (The image on the right was generated with https://huggingface.co/spaces/stabilityai/stable-diffusion)
31
 
32
- **Demos**:
33
- - (stable version): https://lfoppiano-document-qa.hf.space/
34
- - (unstable version): https://document-insights.streamlit.app/
35
-
36
-
37
 
38
  [<img src="https://img.youtube.com/vi/M4UaYs5WKGs/hqdefault.jpg" height="300" align="right"
39
  />](https://www.youtube.com/embed/M4UaYs5WKGs)
 
16
 
17
  <img src="https://github.com/lfoppiano/document-qa/assets/15426/f0a04a86-96b3-406e-8303-904b93f00015" width=300 align="right" />
18
 
19
+ https://lfoppiano-document-qa.hf.space/
20
+
21
  ## Introduction
22
 
23
+ Question/Answering on scientific documents using LLMs: ChatGPT-3.5-turbo, GPT4, GPT4-Turbo, Mistral-7b-instruct and Zephyr-7b-beta.
24
  The streamlit application demonstrates the implementation of a RAG (Retrieval Augmented Generation) on scientific documents, that we are developing at NIMS (National Institute for Materials Science), in Tsukuba, Japan.
25
  Different to most of the projects, we focus on scientific articles.
26
  We target only the full-text using [Grobid](https://github.com/kermitt2/grobid) which provides cleaner results than the raw PDF2Text converter (which is comparable with most of other solutions).
 
31
 
32
  (The image on the right was generated with https://huggingface.co/spaces/stabilityai/stable-diffusion)
33
 
 
 
 
 
 
34
 
35
  [<img src="https://img.youtube.com/vi/M4UaYs5WKGs/hqdefault.jpg" height="300" align="right"
36
  />](https://www.youtube.com/embed/M4UaYs5WKGs)