lfoppiano commited on
Commit
452072e
·
1 Parent(s): 2d76e43

add missing dependencies

Browse files
Files changed (3) hide show
  1. document_qa_engine.py +0 -2
  2. grobid_processors.py +726 -0
  3. streamlit_app.py +3 -3
document_qa_engine.py CHANGED
@@ -12,8 +12,6 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
  from langchain.vectorstores import Chroma
13
  from tqdm import tqdm
14
 
15
- from commons.annotations_utils import GrobidProcessor
16
-
17
 
18
  class DocumentQAEngine:
19
  llm = None
 
12
  from langchain.vectorstores import Chroma
13
  from tqdm import tqdm
14
 
 
 
15
 
16
  class DocumentQAEngine:
17
  llm = None
grobid_processors.py ADDED
@@ -0,0 +1,726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ from collections import OrderedDict
3
+ from html import escape
4
+ from pathlib import Path
5
+
6
+ import dateparser
7
+ import grobid_tei_xml
8
+ from bs4 import BeautifulSoup
9
+ from tqdm import tqdm
10
+
11
+ from commons import supermat_tei_parser
12
+
13
+
14
+ def get_span_start(type, title=None):
15
+ title_ = ' title="' + title + '"' if title is not None else ""
16
+ return '<span class="label ' + type + '"' + title_ + '>'
17
+
18
+
19
+ def get_span_end():
20
+ return '</span>'
21
+
22
+
23
+ def get_rs_start(type):
24
+ return '<rs type="' + type + '">'
25
+
26
+
27
+ def get_rs_end():
28
+ return '</rs>'
29
+
30
+
31
+ def has_space_between_value_and_unit(quantity):
32
+ return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart']
33
+
34
+
35
+ def decorate_text_with_annotations(text, spans, tag="span"):
36
+ """
37
+ Decorate a text using spans, using two style defined by the tag:
38
+ - "span" generated HTML like annotated text
39
+ - "rs" generate XML like annotated text (format SuperMat)
40
+ """
41
+ sorted_spans = list(sorted(spans, key=lambda item: item['offset_start']))
42
+ annotated_text = ""
43
+ start = 0
44
+ for span in sorted_spans:
45
+ type = span['type'].replace("<", "").replace(">", "")
46
+ if 'unit_type' in span and span['unit_type'] is not None:
47
+ type = span['unit_type'].replace(" ", "_")
48
+ annotated_text += escape(text[start: span['offset_start']])
49
+ title = span['quantified'] if 'quantified' in span else None
50
+ annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type)
51
+ annotated_text += escape(text[span['offset_start']: span['offset_end']])
52
+ annotated_text += get_span_end() if tag == "span" else get_rs_end()
53
+
54
+ start = span['offset_end']
55
+ annotated_text += escape(text[start: len(text)])
56
+ return annotated_text
57
+
58
+
59
+ def extract_quantities(client, x_all, column_text_index):
60
+ # relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
61
+ # "magnetic flux density", "magnetic flux"]
62
+ # property_keywords = ['coercivity', 'remanence']
63
+
64
+ output_data = []
65
+
66
+ for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
67
+ text = example[column_text_index]
68
+ spans = GrobidQuantitiesProcessor(client).extract_quantities(text)
69
+
70
+ data_record = {
71
+ "id": example[0],
72
+ "filename": example[1],
73
+ "passage_id": example[2],
74
+ "text": text,
75
+ "spans": spans
76
+ }
77
+
78
+ output_data.append(data_record)
79
+
80
+ return output_data
81
+
82
+
83
+ def extract_materials(client, x_all, column_text_index):
84
+ output_data = []
85
+
86
+ for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
87
+ text = example[column_text_index]
88
+ spans = GrobidMaterialsProcessor(client).extract_materials(text)
89
+ data_record = {
90
+ "id": example[0],
91
+ "filename": example[1],
92
+ "passage_id": example[2],
93
+ "text": text,
94
+ "spans": spans
95
+ }
96
+
97
+ output_data.append(data_record)
98
+
99
+ return output_data
100
+
101
+
102
+ def get_parsed_value_type(quantity):
103
+ if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
104
+ return quantity['parsedValue']['structure']['type']
105
+
106
+
107
+ class BaseProcessor(object):
108
+ # def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None):
109
+ # self.grobid_superconductors_client = grobid_superconductors_client
110
+ # self.grobid_quantities_client = grobid_quantities_client
111
+
112
+ patterns = [
113
+ r'\d+e\d+'
114
+ ]
115
+
116
+ def post_process(self, text):
117
+ output = text.replace('À', '-')
118
+ output = output.replace('¼', '=')
119
+ output = output.replace('þ', '+')
120
+ output = output.replace('Â', 'x')
121
+ output = output.replace('$', '~')
122
+ output = output.replace('−', '-')
123
+ output = output.replace('–', '-')
124
+
125
+ for pattern in self.patterns:
126
+ output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output)
127
+
128
+ return output
129
+
130
+
131
+ class GrobidProcessor(BaseProcessor):
132
+ def __init__(self, grobid_client):
133
+ # super().__init__()
134
+ self.grobid_client = grobid_client
135
+
136
+ def process_structure(self, input_path):
137
+ pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
138
+ input_path,
139
+ consolidate_header=True,
140
+ consolidate_citations=False,
141
+ segment_sentences=False,
142
+ tei_coordinates=False,
143
+ include_raw_citations=False,
144
+ include_raw_affiliations=False,
145
+ generateIDs=True)
146
+
147
+ if status != 200:
148
+ return
149
+
150
+ output_data = self.parse_grobid_xml(text)
151
+ output_data['filename'] = Path(pdf_file).stem.replace(".tei", "")
152
+
153
+ return output_data
154
+
155
+ def process_single(self, input_file):
156
+ doc = self.process_structure(input_file)
157
+
158
+ for paragraph in doc['passages']:
159
+ entities = self.process_single_text(paragraph['text'])
160
+ paragraph['spans'] = entities
161
+
162
+ return doc
163
+
164
+ def parse_grobid_xml(self, text):
165
+ output_data = OrderedDict()
166
+
167
+ doc_biblio = grobid_tei_xml.parse_document_xml(text)
168
+ biblio = {
169
+ "doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "",
170
+ "authors": ", ".join([author.full_name for author in doc_biblio.header.authors]),
171
+ "title": doc_biblio.header.title,
172
+ "hash": doc_biblio.pdf_md5
173
+ }
174
+ try:
175
+ year = dateparser.parse(doc_biblio.header.date).year
176
+ biblio["year"] = year
177
+ except:
178
+ pass
179
+
180
+ output_data['biblio'] = biblio
181
+
182
+ passages = []
183
+ output_data['passages'] = passages
184
+ # if biblio['title'] is not None and len(biblio['title']) > 0:
185
+ # passages.append({
186
+ # "text": self.post_process(biblio['title']),
187
+ # "type": "paragraph",
188
+ # "section": "<header>",
189
+ # "subSection": "<title>",
190
+ # "passage_id": "title0"
191
+ # })
192
+
193
+ if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0:
194
+ passages.append({
195
+ "text": self.post_process(doc_biblio.abstract),
196
+ "type": "paragraph",
197
+ "section": "<header>",
198
+ "subSection": "<abstract>",
199
+ "passage_id": "abstract0"
200
+ })
201
+
202
+ soup = BeautifulSoup(text, 'xml')
203
+ text_blocks_body = get_children_body(soup, verbose=False)
204
+
205
+ passages.extend([
206
+ {
207
+ "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
208
+ text.parent.name != "ref" or (
209
+ text.parent.name == "ref" and text.parent.attrs[
210
+ 'type'] != 'bibr'))),
211
+ "type": "paragraph",
212
+ "section": "<body>",
213
+ "subSection": "<paragraph>",
214
+ "passage_id": str(paragraph_id) + str(sentence_id)
215
+ }
216
+ for paragraph_id, paragraph in enumerate(text_blocks_body) for
217
+ sentence_id, sentence in enumerate(paragraph)
218
+ ])
219
+
220
+ text_blocks_figures = get_children_figures(soup, verbose=False)
221
+
222
+ passages.extend([
223
+ {
224
+ "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
225
+ text.parent.name != "ref" or (
226
+ text.parent.name == "ref" and text.parent.attrs[
227
+ 'type'] != 'bibr'))),
228
+ "type": "paragraph",
229
+ "section": "<body>",
230
+ "subSection": "<figure>",
231
+ "passage_id": str(paragraph_id) + str(sentence_id)
232
+ }
233
+ for paragraph_id, paragraph in enumerate(text_blocks_figures) for
234
+ sentence_id, sentence in enumerate(paragraph)
235
+ ])
236
+
237
+ return output_data
238
+
239
+
240
+ class GrobidQuantitiesProcessor(BaseProcessor):
241
+ def __init__(self, grobid_quantities_client):
242
+ self.grobid_quantities_client = grobid_quantities_client
243
+
244
+ def extract_quantities(self, text):
245
+ status, result = self.grobid_quantities_client.process_text(text.strip())
246
+
247
+ if status != 200:
248
+ result = {}
249
+
250
+ spans = []
251
+
252
+ if 'measurements' in result:
253
+ found_measurements = self.parse_measurements_output(result)
254
+
255
+ for m in found_measurements:
256
+ item = {
257
+ "text": text[m['offset_start']:m['offset_end']],
258
+ 'offset_start': m['offset_start'],
259
+ 'offset_end': m['offset_end']
260
+ }
261
+
262
+ if 'raw' in m and m['raw'] != item['text']:
263
+ item['text'] = m['raw']
264
+
265
+ if 'quantified_substance' in m:
266
+ item['quantified'] = m['quantified_substance']
267
+
268
+ if 'type' in m:
269
+ item["unit_type"] = m['type']
270
+
271
+ item['type'] = 'property'
272
+ # if 'raw_value' in m:
273
+ # item['raw_value'] = m['raw_value']
274
+
275
+ spans.append(item)
276
+
277
+ return spans
278
+
279
+ @staticmethod
280
+ def parse_measurements_output(result):
281
+ measurements_output = []
282
+
283
+ for measurement in result['measurements']:
284
+ type = measurement['type']
285
+ measurement_output_object = {}
286
+ quantity_type = None
287
+ has_unit = False
288
+ parsed_value_type = None
289
+
290
+ if 'quantified' in measurement:
291
+ if 'normalizedName' in measurement['quantified']:
292
+ quantified_substance = measurement['quantified']['normalizedName']
293
+ measurement_output_object["quantified_substance"] = quantified_substance
294
+
295
+ if 'measurementOffsets' in measurement:
296
+ measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start']
297
+ measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end']
298
+ else:
299
+ # If there are no offsets we skip the measurement
300
+ continue
301
+
302
+ # if 'measurementRaw' in measurement:
303
+ # measurement_output_object['raw_value'] = measurement['measurementRaw']
304
+
305
+ if type == 'value':
306
+ quantity = measurement['quantity']
307
+
308
+ parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity)
309
+ if parsed_value:
310
+ measurement_output_object['parsed'] = parsed_value
311
+
312
+ normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity)
313
+ if normalized_value:
314
+ measurement_output_object['normalized'] = normalized_value
315
+
316
+ raw_value = GrobidQuantitiesProcessor.get_raw(quantity)
317
+ if raw_value:
318
+ measurement_output_object['raw'] = raw_value
319
+
320
+ if 'type' in quantity:
321
+ quantity_type = quantity['type']
322
+
323
+ if 'rawUnit' in quantity:
324
+ has_unit = True
325
+
326
+ parsed_value_type = get_parsed_value_type(quantity)
327
+
328
+ elif type == 'interval':
329
+ if 'quantityMost' in measurement:
330
+ quantityMost = measurement['quantityMost']
331
+ if 'type' in quantityMost:
332
+ quantity_type = quantityMost['type']
333
+
334
+ if 'rawUnit' in quantityMost:
335
+ has_unit = True
336
+
337
+ parsed_value_type = get_parsed_value_type(quantityMost)
338
+
339
+ if 'quantityLeast' in measurement:
340
+ quantityLeast = measurement['quantityLeast']
341
+
342
+ if 'type' in quantityLeast:
343
+ quantity_type = quantityLeast['type']
344
+
345
+ if 'rawUnit' in quantityLeast:
346
+ has_unit = True
347
+
348
+ parsed_value_type = get_parsed_value_type(quantityLeast)
349
+
350
+ elif type == 'listc':
351
+ quantities = measurement['quantities']
352
+
353
+ if 'type' in quantities[0]:
354
+ quantity_type = quantities[0]['type']
355
+
356
+ if 'rawUnit' in quantities[0]:
357
+ has_unit = True
358
+
359
+ parsed_value_type = get_parsed_value_type(quantities[0])
360
+
361
+ if quantity_type is not None or has_unit:
362
+ measurement_output_object['type'] = quantity_type
363
+
364
+ if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']:
365
+ measurements_output.append(measurement_output_object)
366
+
367
+ return measurements_output
368
+
369
+ @staticmethod
370
+ def get_parsed(quantity):
371
+ parsed_value = parsed_unit = None
372
+ if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']:
373
+ parsed_value = quantity['parsedValue']['parsed']
374
+ if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']:
375
+ parsed_unit = quantity['parsedUnit']['name']
376
+
377
+ if parsed_value and parsed_unit:
378
+ if has_space_between_value_and_unit(quantity):
379
+ return str(parsed_value) + str(parsed_unit)
380
+ else:
381
+ return str(parsed_value) + " " + str(parsed_unit)
382
+
383
+ @staticmethod
384
+ def get_normalized(quantity):
385
+ normalized_value = normalized_unit = None
386
+ if 'normalizedQuantity' in quantity:
387
+ normalized_value = quantity['normalizedQuantity']
388
+ if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']:
389
+ normalized_unit = quantity['normalizedUnit']['name']
390
+
391
+ if normalized_value and normalized_unit:
392
+ if has_space_between_value_and_unit(quantity):
393
+ return str(normalized_value) + " " + str(normalized_unit)
394
+ else:
395
+ return str(normalized_value) + str(normalized_unit)
396
+
397
+ @staticmethod
398
+ def get_raw(quantity):
399
+ raw_value = raw_unit = None
400
+ if 'rawValue' in quantity:
401
+ raw_value = quantity['rawValue']
402
+ if 'rawUnit' in quantity and 'name' in quantity['rawUnit']:
403
+ raw_unit = quantity['rawUnit']['name']
404
+
405
+ if raw_value and raw_unit:
406
+ if has_space_between_value_and_unit(quantity):
407
+ return str(raw_value) + " " + str(raw_unit)
408
+ else:
409
+ return str(raw_value) + str(raw_unit)
410
+
411
+
412
+ class GrobidMaterialsProcessor(BaseProcessor):
413
+ def __init__(self, grobid_superconductors_client):
414
+ self.grobid_superconductors_client = grobid_superconductors_client
415
+
416
+ def extract_materials(self, text):
417
+ status, result = self.grobid_superconductors_client.process_text(text.strip(), "processText_disable_linking")
418
+
419
+ if status != 200:
420
+ result = {}
421
+
422
+ spans = []
423
+
424
+ if 'passages' in result:
425
+ materials = self.parse_superconductors_output(result, text)
426
+
427
+ for m in materials:
428
+ item = {"text": text[m['offset_start']:m['offset_end']]}
429
+
430
+ item['offset_start'] = m['offset_start']
431
+ item['offset_end'] = m['offset_end']
432
+
433
+ if 'formula' in m:
434
+ item["formula"] = m['formula']
435
+
436
+ item['type'] = 'material'
437
+ item['raw_value'] = m['text']
438
+
439
+ spans.append(item)
440
+
441
+ return spans
442
+
443
+ def parse_materials(self, text):
444
+ status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials")
445
+
446
+ if status != 200:
447
+ result = []
448
+
449
+ results = []
450
+ for position_material in result:
451
+ compositions = []
452
+ for material in position_material:
453
+ if 'resolvedFormulas' in material:
454
+ for resolved_formula in material['resolvedFormulas']:
455
+ if 'formulaComposition' in resolved_formula:
456
+ compositions.append(resolved_formula['formulaComposition'])
457
+ elif 'formula' in material:
458
+ if 'formulaComposition' in material['formula']:
459
+ compositions.append(material['formula']['formulaComposition'])
460
+ results.append(compositions)
461
+
462
+ return results
463
+
464
+ def parse_material(self, text):
465
+ status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial")
466
+
467
+ if status != 200:
468
+ result = []
469
+
470
+ compositions = []
471
+ for material in result:
472
+ if 'resolvedFormulas' in material:
473
+ for resolved_formula in material['resolvedFormulas']:
474
+ if 'formulaComposition' in resolved_formula:
475
+ compositions.append(resolved_formula['formulaComposition'])
476
+ elif 'formula' in material:
477
+ if 'formulaComposition' in material['formula']:
478
+ compositions.append(material['formula']['formulaComposition'])
479
+
480
+ return compositions
481
+
482
+ @staticmethod
483
+ def parse_superconductors_output(result, original_text):
484
+ materials = []
485
+
486
+ for passage in result['passages']:
487
+ sentence_offset = original_text.index(passage['text'])
488
+ if 'spans' in passage:
489
+ spans = passage['spans']
490
+ for material_span in filter(lambda s: s['type'] == '<material>', spans):
491
+ text_ = material_span['text']
492
+
493
+ base_material_information = {
494
+ "text": text_,
495
+ "offset_start": sentence_offset + material_span['offset_start'],
496
+ 'offset_end': sentence_offset + material_span['offset_end']
497
+ }
498
+
499
+ materials.append(base_material_information)
500
+
501
+ return materials
502
+
503
+
504
+ class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
505
+ def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None):
506
+ GrobidProcessor.__init__(self, grobid_client)
507
+ GrobidQuantitiesProcessor.__init__(self, grobid_quantities_client)
508
+ GrobidMaterialsProcessor.__init__(self, grobid_superconductors_client)
509
+
510
+ def process_single_text(self, text):
511
+ extracted_quantities_spans = extract_quantities(self.grobid_quantities_client, text)
512
+ extracted_materials_spans = extract_materials(self.grobid_superconductors_client, text)
513
+ all_entities = extracted_quantities_spans + extracted_materials_spans
514
+ entities = self.prune_overlapping_annotations(all_entities)
515
+ return entities
516
+
517
+ @staticmethod
518
+ def prune_overlapping_annotations(entities: list) -> list:
519
+ # Sorting by offsets
520
+ sorted_entities = sorted(entities, key=lambda d: d['offset_start'])
521
+
522
+ if len(entities) <= 1:
523
+ return sorted_entities
524
+
525
+ to_be_removed = []
526
+
527
+ previous = None
528
+ first = True
529
+
530
+ for current in sorted_entities:
531
+ if first:
532
+ first = False
533
+ previous = current
534
+ continue
535
+
536
+ if previous['offset_start'] < current['offset_start'] \
537
+ and previous['offset_end'] < current['offset_end'] \
538
+ and (previous['offset_end'] < current['offset_start'] \
539
+ and not (previous['text'] == "-" and current['text'][0].isdigit())):
540
+ previous = current
541
+ continue
542
+
543
+ if previous['offset_end'] < current['offset_end']:
544
+ if current['type'] == previous['type']:
545
+ # Type is the same
546
+ if current['offset_start'] == previous['offset_end']:
547
+ if current['type'] == 'property':
548
+ if current['text'].startswith("."):
549
+ print(
550
+ f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
551
+ # current entity starts with a ".", suspiciously look like a truncated value
552
+ to_be_removed.append(previous)
553
+ current['text'] = previous['text'] + current['text']
554
+ current['raw_value'] = current['text']
555
+ current['offset_start'] = previous['offset_start']
556
+ elif previous['text'].endswith(".") and current['text'][0].isdigit():
557
+ print(
558
+ f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
559
+ # previous entity ends with ".", current entity starts with a number
560
+ to_be_removed.append(previous)
561
+ current['text'] = previous['text'] + current['text']
562
+ current['raw_value'] = current['text']
563
+ current['offset_start'] = previous['offset_start']
564
+ elif previous['text'].startswith("-"):
565
+ print(
566
+ f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
567
+ # previous starts with a `-`, sherlock this is another truncated value
568
+ current['text'] = previous['text'] + current['text']
569
+ current['raw_value'] = current['text']
570
+ current['offset_start'] = previous['offset_start']
571
+ to_be_removed.append(previous)
572
+ else:
573
+ print("Other cases to be considered: ", previous, current)
574
+ else:
575
+ if current['text'].startswith("-"):
576
+ print(
577
+ f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
578
+ # previous starts with a `-`, sherlock this is another truncated value
579
+ current['text'] = previous['text'] + current['text']
580
+ current['raw_value'] = current['text']
581
+ current['offset_start'] = previous['offset_start']
582
+ to_be_removed.append(previous)
583
+ else:
584
+ print("Other cases to be considered: ", previous, current)
585
+
586
+ elif previous['text'] == "-" and current['text'][0].isdigit():
587
+ print(
588
+ f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
589
+ # previous starts with a `-`, sherlock this is another truncated value
590
+ current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \
591
+ current['text']
592
+ current['raw_value'] = current['text']
593
+ current['offset_start'] = previous['offset_start']
594
+ to_be_removed.append(previous)
595
+ else:
596
+ print(
597
+ f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
598
+
599
+ # take the largest one
600
+ if len(previous['text']) > len(current['text']):
601
+ to_be_removed.append(current)
602
+ elif len(previous['text']) < len(current['text']):
603
+ to_be_removed.append(previous)
604
+ else:
605
+ to_be_removed.append(previous)
606
+ elif current['type'] != previous['type']:
607
+ print(
608
+ f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
609
+
610
+ if len(previous['text']) > len(current['text']):
611
+ to_be_removed.append(current)
612
+ elif len(previous['text']) < len(current['text']):
613
+ to_be_removed.append(previous)
614
+ else:
615
+ if current['type'] == "material":
616
+ to_be_removed.append(previous)
617
+ else:
618
+ to_be_removed.append(current)
619
+ previous = current
620
+
621
+ elif previous['offset_end'] > current['offset_end']:
622
+ to_be_removed.append(current)
623
+ # the previous goes after the current, so we keep the previous and we discard the current
624
+ else:
625
+ if current['type'] == "material":
626
+ to_be_removed.append(previous)
627
+ else:
628
+ to_be_removed.append(current)
629
+ previous = current
630
+
631
+ new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed]
632
+
633
+ return new_sorted_entities
634
+
635
+
636
+ class XmlProcessor(BaseProcessor):
637
+ def __init__(self, grobid_superconductors_client, grobid_quantities_client):
638
+ super().__init__(grobid_superconductors_client, grobid_quantities_client)
639
+
640
+ def process_structure(self, input_file):
641
+ text = ""
642
+ with open(input_file, encoding='utf-8') as fi:
643
+ text = fi.read()
644
+
645
+ output_data = self.parse_xml(text)
646
+ output_data['filename'] = Path(input_file).stem.replace(".tei", "")
647
+
648
+ return output_data
649
+
650
+ def process_single(self, input_file):
651
+ doc = self.process_structure(input_file)
652
+
653
+ for paragraph in doc['passages']:
654
+ entities = self.process_single_text(paragraph['text'])
655
+ paragraph['spans'] = entities
656
+
657
+ return doc
658
+
659
+ def parse_xml(self, text):
660
+ output_data = OrderedDict()
661
+ soup = BeautifulSoup(text, 'xml')
662
+ text_blocks_children = supermat_tei_parser.get_children_list(soup, verbose=False)
663
+
664
+ passages = []
665
+ output_data['passages'] = passages
666
+ passages.extend([
667
+ {
668
+ "text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
669
+ text.parent.name != "ref" or (
670
+ text.parent.name == "ref" and text.parent.attrs[
671
+ 'type'] != 'bibr'))),
672
+ "type": "paragraph",
673
+ "section": "<body>",
674
+ "subSection": "<paragraph>",
675
+ "passage_id": str(paragraph_id) + str(sentence_id)
676
+ }
677
+ for paragraph_id, paragraph in enumerate(text_blocks_children) for
678
+ sentence_id, sentence in enumerate(paragraph)
679
+ ])
680
+
681
+ return output_data
682
+
683
+
684
+ def get_children_list(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
685
+ children = []
686
+
687
+ child_name = "p" if use_paragraphs else "s"
688
+ for child in soup.TEI.children:
689
+ if child.name == 'teiHeader':
690
+ pass
691
+ # children.extend(child.find_all("title", attrs={"level": "a"}, limit=1))
692
+ # children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
693
+ elif child.name == 'text':
694
+ children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
695
+ children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
696
+
697
+ if verbose:
698
+ print(str(children))
699
+
700
+ return children
701
+
702
+
703
+ def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
704
+ children = []
705
+ child_name = "p" if use_paragraphs else "s"
706
+ for child in soup.TEI.children:
707
+ if child.name == 'text':
708
+ children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
709
+
710
+ if verbose:
711
+ print(str(children))
712
+
713
+ return children
714
+
715
+
716
+ def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
717
+ children = []
718
+ child_name = "p" if use_paragraphs else "s"
719
+ for child in soup.TEI.children:
720
+ if child.name == 'text':
721
+ children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
722
+
723
+ if verbose:
724
+ print(str(children))
725
+
726
+ return children
streamlit_app.py CHANGED
@@ -1,17 +1,17 @@
1
  import os
2
- from datetime import datetime
3
  from hashlib import blake2b
4
  from tempfile import NamedTemporaryFile
5
 
6
  import dotenv
 
 
 
7
  import streamlit as st
8
  from langchain.chat_models import PromptLayerChatOpenAI
9
  from langchain.embeddings import OpenAIEmbeddings
10
 
11
  from document_qa_engine import DocumentQAEngine
12
 
13
- dotenv.load_dotenv(override=True)
14
-
15
  if 'rqa' not in st.session_state:
16
  st.session_state['rqa'] = None
17
 
 
1
  import os
 
2
  from hashlib import blake2b
3
  from tempfile import NamedTemporaryFile
4
 
5
  import dotenv
6
+
7
+ dotenv.load_dotenv(override=True)
8
+
9
  import streamlit as st
10
  from langchain.chat_models import PromptLayerChatOpenAI
11
  from langchain.embeddings import OpenAIEmbeddings
12
 
13
  from document_qa_engine import DocumentQAEngine
14
 
 
 
15
  if 'rqa' not in st.session_state:
16
  st.session_state['rqa'] = None
17