Spaces:
Running
Running
initial commit
Browse files- .gitattributes +1 -0
- 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth +3 -0
- app.py +57 -0
- model.py +20 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
|
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24a803b0e458a9949a7725d651f780c5c77592042d159c7dcd3e658e95e5b96d
|
3 |
+
size 31273033
|
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from model import create_effnetb2_model
|
5 |
+
from timeit import default_timer as timer
|
6 |
+
|
7 |
+
# Setup class names
|
8 |
+
class_names = ["pizza", "steak", "sushi"]
|
9 |
+
|
10 |
+
# Create model
|
11 |
+
model, transforms = create_effnetb2_model(
|
12 |
+
num_classes=3,
|
13 |
+
)
|
14 |
+
|
15 |
+
# Load saved weights
|
16 |
+
model.load_state_dict(
|
17 |
+
torch.load(
|
18 |
+
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
19 |
+
map_location=torch.device("cpu"), # load to CPU
|
20 |
+
)
|
21 |
+
)
|
22 |
+
|
23 |
+
# Create prediction code
|
24 |
+
def predict(img):
|
25 |
+
start_time = timer()
|
26 |
+
img = transforms(img).unsqueeze(0)
|
27 |
+
model.eval()
|
28 |
+
with torch.inference_mode():
|
29 |
+
pred_probs = torch.softmax(model(img), dim=1)
|
30 |
+
pred_labels_and_probs = {
|
31 |
+
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
|
32 |
+
}
|
33 |
+
pred_time = round(timer() - start_time, 5)
|
34 |
+
return pred_labels_and_probs, pred_time
|
35 |
+
|
36 |
+
|
37 |
+
# Create Gradio app
|
38 |
+
title = "FoodVision Mini ππ₯©π£"
|
39 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
40 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
41 |
+
example_dir = "demo/examples"
|
42 |
+
|
43 |
+
demo = gr.Interface(
|
44 |
+
fn=predict,
|
45 |
+
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=[
|
47 |
+
gr.Label(num_top_classes=3, label="Predictions"),
|
48 |
+
gr.Number(label="Prediction time (s)"),
|
49 |
+
],
|
50 |
+
# examples="demo/foodvision_mini/examples",
|
51 |
+
interpretation="default",
|
52 |
+
title=title,
|
53 |
+
description=description,
|
54 |
+
article=article,
|
55 |
+
)
|
56 |
+
|
57 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
def create_effnetb2_model(num_classes: int):
|
7 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
8 |
+
transforms = weights.transforms()
|
9 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
10 |
+
|
11 |
+
# Freeze base model
|
12 |
+
for param in model.parameters():
|
13 |
+
param.requires_grad = False
|
14 |
+
|
15 |
+
# Change classifier head
|
16 |
+
model.classifier = nn.Sequential(
|
17 |
+
nn.Dropout(p=0.3, inplace=True),
|
18 |
+
nn.Linear(in_features=1408, out_features=num_classes),
|
19 |
+
)
|
20 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|