Spaces:
Running
on
Zero
Running
on
Zero
from __future__ import annotations | |
import os | |
import gc | |
from tqdm import tqdm | |
import wandb | |
import torch | |
from torch.optim import AdamW | |
from torch.utils.data import DataLoader, Dataset, SequentialSampler | |
from torch.optim.lr_scheduler import LinearLR, SequentialLR | |
from einops import rearrange | |
from accelerate import Accelerator | |
from accelerate.utils import DistributedDataParallelKwargs | |
from ema_pytorch import EMA | |
from model import CFM | |
from model.utils import exists, default | |
from model.dataset import DynamicBatchSampler, collate_fn | |
# trainer | |
class Trainer: | |
def __init__( | |
self, | |
model: CFM, | |
epochs, | |
learning_rate, | |
num_warmup_updates = 20000, | |
save_per_updates = 1000, | |
checkpoint_path = None, | |
batch_size = 32, | |
batch_size_type: str = "sample", | |
max_samples = 32, | |
grad_accumulation_steps = 1, | |
max_grad_norm = 1.0, | |
noise_scheduler: str | None = None, | |
duration_predictor: torch.nn.Module | None = None, | |
wandb_project = "test_e2-tts", | |
wandb_run_name = "test_run", | |
wandb_resume_id: str = None, | |
last_per_steps = None, | |
accelerate_kwargs: dict = dict(), | |
ema_kwargs: dict = dict() | |
): | |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters = True) | |
logger = "wandb" if wandb.api.api_key else None | |
print(f"Using logger: {logger}") | |
self.accelerator = Accelerator( | |
log_with = logger, | |
kwargs_handlers = [ddp_kwargs], | |
gradient_accumulation_steps = grad_accumulation_steps, | |
**accelerate_kwargs | |
) | |
if logger == "wandb": | |
if exists(wandb_resume_id): | |
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name, 'id': wandb_resume_id}} | |
else: | |
init_kwargs={"wandb": {"resume": "allow", "name": wandb_run_name}} | |
self.accelerator.init_trackers( | |
project_name = wandb_project, | |
init_kwargs=init_kwargs, | |
config={"epochs": epochs, | |
"learning_rate": learning_rate, | |
"num_warmup_updates": num_warmup_updates, | |
"batch_size": batch_size, | |
"batch_size_type": batch_size_type, | |
"max_samples": max_samples, | |
"grad_accumulation_steps": grad_accumulation_steps, | |
"max_grad_norm": max_grad_norm, | |
"gpus": self.accelerator.num_processes, | |
"noise_scheduler": noise_scheduler} | |
) | |
self.model = model | |
if self.is_main: | |
self.ema_model = EMA( | |
model, | |
include_online_model = False, | |
**ema_kwargs | |
) | |
self.ema_model.to(self.accelerator.device) | |
self.epochs = epochs | |
self.num_warmup_updates = num_warmup_updates | |
self.save_per_updates = save_per_updates | |
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps) | |
self.checkpoint_path = default(checkpoint_path, 'ckpts/test_e2-tts') | |
self.batch_size = batch_size | |
self.batch_size_type = batch_size_type | |
self.max_samples = max_samples | |
self.grad_accumulation_steps = grad_accumulation_steps | |
self.max_grad_norm = max_grad_norm | |
self.noise_scheduler = noise_scheduler | |
self.duration_predictor = duration_predictor | |
self.optimizer = AdamW(model.parameters(), lr=learning_rate) | |
self.model, self.optimizer = self.accelerator.prepare( | |
self.model, self.optimizer | |
) | |
def is_main(self): | |
return self.accelerator.is_main_process | |
def save_checkpoint(self, step, last=False): | |
self.accelerator.wait_for_everyone() | |
if self.is_main: | |
checkpoint = dict( | |
model_state_dict = self.accelerator.unwrap_model(self.model).state_dict(), | |
optimizer_state_dict = self.accelerator.unwrap_model(self.optimizer).state_dict(), | |
ema_model_state_dict = self.ema_model.state_dict(), | |
scheduler_state_dict = self.scheduler.state_dict(), | |
step = step | |
) | |
if not os.path.exists(self.checkpoint_path): | |
os.makedirs(self.checkpoint_path) | |
if last == True: | |
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt") | |
print(f"Saved last checkpoint at step {step}") | |
else: | |
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt") | |
def load_checkpoint(self): | |
if not exists(self.checkpoint_path) or not os.path.exists(self.checkpoint_path) or not os.listdir(self.checkpoint_path): | |
return 0 | |
self.accelerator.wait_for_everyone() | |
if "model_last.pt" in os.listdir(self.checkpoint_path): | |
latest_checkpoint = "model_last.pt" | |
else: | |
latest_checkpoint = sorted([f for f in os.listdir(self.checkpoint_path) if f.endswith('.pt')], key=lambda x: int(''.join(filter(str.isdigit, x))))[-1] | |
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ | |
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu") | |
if self.is_main: | |
self.ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
if 'step' in checkpoint: | |
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) | |
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint['optimizer_state_dict']) | |
if self.scheduler: | |
self.scheduler.load_state_dict(checkpoint['scheduler_state_dict']) | |
step = checkpoint['step'] | |
else: | |
checkpoint['model_state_dict'] = {k.replace("ema_model.", ""): v for k, v in checkpoint['ema_model_state_dict'].items() if k not in ["initted", "step"]} | |
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint['model_state_dict']) | |
step = 0 | |
del checkpoint; gc.collect() | |
return step | |
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None): | |
if exists(resumable_with_seed): | |
generator = torch.Generator() | |
generator.manual_seed(resumable_with_seed) | |
else: | |
generator = None | |
if self.batch_size_type == "sample": | |
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, | |
batch_size=self.batch_size, shuffle=True, generator=generator) | |
elif self.batch_size_type == "frame": | |
self.accelerator.even_batches = False | |
sampler = SequentialSampler(train_dataset) | |
batch_sampler = DynamicBatchSampler(sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False) | |
train_dataloader = DataLoader(train_dataset, collate_fn=collate_fn, num_workers=num_workers, pin_memory=True, persistent_workers=True, | |
batch_sampler=batch_sampler) | |
else: | |
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}") | |
# accelerator.prepare() dispatches batches to devices; | |
# which means the length of dataloader calculated before, should consider the number of devices | |
warmup_steps = self.num_warmup_updates * self.accelerator.num_processes # consider a fixed warmup steps while using accelerate multi-gpu ddp | |
# otherwise by default with split_batches=False, warmup steps change with num_processes | |
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps | |
decay_steps = total_steps - warmup_steps | |
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps) | |
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps) | |
self.scheduler = SequentialLR(self.optimizer, | |
schedulers=[warmup_scheduler, decay_scheduler], | |
milestones=[warmup_steps]) | |
train_dataloader, self.scheduler = self.accelerator.prepare(train_dataloader, self.scheduler) # actual steps = 1 gpu steps / gpus | |
start_step = self.load_checkpoint() | |
global_step = start_step | |
if exists(resumable_with_seed): | |
orig_epoch_step = len(train_dataloader) | |
skipped_epoch = int(start_step // orig_epoch_step) | |
skipped_batch = start_step % orig_epoch_step | |
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch) | |
else: | |
skipped_epoch = 0 | |
for epoch in range(skipped_epoch, self.epochs): | |
self.model.train() | |
if exists(resumable_with_seed) and epoch == skipped_epoch: | |
progress_bar = tqdm(skipped_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process, | |
initial=skipped_batch, total=orig_epoch_step) | |
else: | |
progress_bar = tqdm(train_dataloader, desc=f"Epoch {epoch+1}/{self.epochs}", unit="step", disable=not self.accelerator.is_local_main_process) | |
for batch in progress_bar: | |
with self.accelerator.accumulate(self.model): | |
text_inputs = batch['text'] | |
mel_spec = rearrange(batch['mel'], 'b d n -> b n d') | |
mel_lengths = batch["mel_lengths"] | |
# TODO. add duration predictor training | |
if self.duration_predictor is not None and self.accelerator.is_local_main_process: | |
dur_loss = self.duration_predictor(mel_spec, lens=batch.get('durations')) | |
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step) | |
loss, cond, pred = self.model(mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler) | |
self.accelerator.backward(loss) | |
if self.max_grad_norm > 0 and self.accelerator.sync_gradients: | |
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm) | |
self.optimizer.step() | |
self.scheduler.step() | |
self.optimizer.zero_grad() | |
if self.is_main: | |
self.ema_model.update() | |
global_step += 1 | |
if self.accelerator.is_local_main_process: | |
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step) | |
progress_bar.set_postfix(step=str(global_step), loss=loss.item()) | |
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0: | |
self.save_checkpoint(global_step) | |
if global_step % self.last_per_steps == 0: | |
self.save_checkpoint(global_step, last=True) | |
self.accelerator.end_training() | |