test_dev_mode / app.py
mrm8488's picture
Feat: add task synonyms
e706e8c
import gradio as gr
# Synonyms for each task category
task_synonyms = {
"Undergraduate level knowledge": ["undergraduate level knowledge", "MMLU"],
"Graduate level reasoning": ["graduate level reasoning", "GPOA", "Diamond"],
"Grade school math": ["grade school math", "GSM8K"],
"Math problem-solving": ["math problem-solving", "MATH"],
"Multilingual math": ["multilingual math", "MGSM"],
"Code": ["code", "coding", "programming", "HumanEval"],
"Reasoning over text": ["reasoning over text", "DROP", "F1 score"],
"Mixed evaluations": ["mixed evaluations", "BIG-Bench-Hard"],
"Knowledge Q&A": ["knowledge Q&A", "ARC-Challenge"],
"Common Knowledge": ["common knowledge", "HellaSwag"],
}
# LLM performance data with scores
performance_data = {
"Undergraduate level knowledge": [("Claude 3 Opus", 86.8), ("GPT-4", 86.4), ("Gemini 1.0 Ultra", 83.7)],
"Graduate level reasoning": [("Claude 3 Opus", 50.4), ("Claude 3 Sonnet", 40.4), ("GPT-4", 35.7)],
"Grade school math": [("Claude 3 Opus", 95.0), ("Gemini 1.0 Ultra", 94.4), ("GPT-4", 92.0)],
"Math problem-solving": [("Claude 3 Opus", 60.1), ("Gemini 1.0 Ultra", 53.2), ("GPT-4", 52.9)],
"Multilingual math": [("Claude 3 Opus", 90.7), ("Claude 3 Sonnet", 83.5), ("Gemini 1.0 Ultra", 79.0)],
"Code": [("Claude 3 Opus", 84.9), ("Gemini 1.0 Ultra", 74.4), ("Claude 3 Haiku", 75.9)],
"Reasoning over text": [("Claude 3 Opus", 83.1), ("Gemini 1.0 Ultra", 82.4), ("GPT-4", 80.9)],
"Mixed evaluations": [("Claude 3 Opus", 86.8), ("Gemini 1.0 Ultra", 83.6), ("GPT-4", 83.1)],
"Knowledge Q&A": [("Claude 3 Opus", 96.4), ("GPT-4", 96.3), ("Claude 3 Sonnet", 93.2)],
"Common Knowledge": [("Claude 3 Opus", 95.4), ("GPT-4", 95.3), ("Gemini 1.0 Ultra", 87.8)],
}
def recommend_llm(task):
# Normalize the input task to match against synonyms
task_lower = task.lower()
main_category = None
for key, synonyms in task_synonyms.items():
if task_lower in map(str.lower, synonyms):
main_category = key
break
if not main_category:
return "No data available"
recommendations = performance_data.get(main_category, [])
recommendations_sorted = sorted(recommendations, key=lambda x: x[1], reverse=True)
result = f"For {task}, the recommended LLMs are:\n"
for i, (model, score) in enumerate(recommendations_sorted):
result += f"{i+1}. {model} with a score of {score}%\n"
return result
# Gradio interface
interface = gr.Interface(
fn=recommend_llm,
inputs=gr.Textbox(label="Enter Task"),
outputs=gr.Textbox(label="LLM Recommendations"),
title="LLM Recommendation App",
description="Enter a task to get recommendations for the best LLMs based on performance data. For example, you can enter 'coding', 'undergraduate level knowledge', etc."
)
# Launch the app
interface.launch()