mskov's picture
Update app.py
bfb930a
raw
history blame
2.74 kB
from typing import Dict
import gradio as gr
import whisper
from whisper.tokenizer import get_tokenizer
import classify
model_cache = {}
def zero_shot_classify(audio_path: str, class_names: str, model_name: str) -> Dict[str, float]:
class_names = class_names.split(",")
tokenizer = get_tokenizer(multilingual=".en" not in model_name)
if model_name not in model_cache:
model = whisper.load_model(model_name)
model_cache[model_name] = model
else:
model = model_cache[model_name]
internal_lm_average_logprobs = classify.calculate_internal_lm_average_logprobs(
model=model,
class_names=class_names,
tokenizer=tokenizer,
)
audio_features = classify.calculate_audio_features(audio_path, model)
average_logprobs = classify.calculate_average_logprobs(
model=model,
audio_features=audio_features,
class_names=class_names,
tokenizer=tokenizer,
)
average_logprobs -= internal_lm_average_logprobs
scores = average_logprobs.softmax(-1).tolist()
return {class_name: score for class_name, score in zip(class_names, scores)}
def main():
CLASS_NAMES = "[dog barking],[helicopter whirring],[laughing],[birds chirping],[clock ticking]"
AUDIO_PATHS = [
"./data/(dog)1-100032-A-0.wav",
"./data/(helicopter)1-181071-A-40.wav",
"./data/(laughing)1-1791-A-26.wav",
"./data/(chirping_birds)1-34495-A-14.wav",
"./data/(clock_tick)1-21934-A-38.wav",
]
EXAMPLES = []
for audio_path in AUDIO_PATHS:
EXAMPLES.append([audio_path, CLASS_NAMES, "small"])
DESCRIPTION = (
'<div style="text-align: center;">'
"<p>This demo allows you to try out zero-shot audio classification using "
"<a href=https://github.com/openai/whisper>Whisper</a>.</p>"
"<p>Github: <a href=https://github.com/jumon/zac>https://github.com/jumon/zac</a></p>"
"<p>Example audio files are from the <a href=https://github.com/karolpiczak/ESC-50>ESC-50"
"</a> dataset (CC BY-NC 3.0).</p></div>"
)
demo = gr.Interface(
fn=zero_shot_classify,
inputs=[
gr.Audio(label="Input Audio",show_label=False,source="microphone",type="filepath"),
gr.Textbox(lines=1, label="Candidate class names (comma-separated)"),
gr.Radio(
choices=["tiny", "base", "small", "medium", "large"],
value="small",
label="Model Name",
),
],
outputs="label",
examples=EXAMPLES,
title="Zero-shot Audio Classification using Whisper",
description=DESCRIPTION,
)
demo.launch()
if __name__ == "__main__":
main()