File size: 18,730 Bytes
7aae94f
 
 
 
 
 
 
 
 
f1fa713
7aae94f
 
 
 
f1fa713
7aae94f
 
 
 
f1fa713
7aae94f
 
 
 
f1fa713
7aae94f
 
 
 
f1fa713
7aae94f
 
 
 
f1fa713
7aae94f
536679f
7aae94f
 
f1fa713
7aae94f
 
 
 
f1fa713
 
 
 
 
 
7aae94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767d579
 
7aae94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1fa713
 
 
 
 
 
 
 
 
 
 
 
7aae94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3620e
 
 
 
 
 
 
 
f8ed0b8
ca3620e
 
 
 
 
 
 
 
7aae94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536679f
7aae94f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
config:
  REPO_ID: "mteb/leaderboard"
  RESULTS_REPO: mteb/results
  LEADERBOARD_NAME: "MTEB Leaderboard"
tasks:
  BitextMining:
    icon: "🎌"
    metric: f1
    metric_description: "[F1](https://huggingface.co/spaces/evaluate-metric/f1)"
    task_description: "Bitext mining is the task of finding parallel sentences in two languages."
  Classification:
    icon: "❀️"
    metric: accuracy
    metric_description: "[Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)"
    task_description: "Classification is the task of assigning a label to a text."
  Clustering:
    icon: "✨"
    metric: v_measure
    metric_description: "Validity Measure (v_measure)"
    task_description: "Clustering is the task of grouping similar documents together."
  PairClassification:
    icon: "🎭"
    metric: cos_sim_ap
    metric_description: "Average Precision based on Cosine Similarities (cos_sim_ap)"
    task_description: "Pair classification is the task of determining whether two texts are similar."
  Reranking: 
    icon: "πŸ₯ˆ"
    metric: map
    metric_description: "Mean Average Precision (MAP)"
    task_description: "Reranking is the task of reordering a list of documents to improve relevance."
  Retrieval:
    icon: "πŸ”Ž"
    metric: ndcg_at_10
    metric_description: "Normalized Discounted Cumulative Gain @ k (ndcg_at_10)"
    task_description: "Retrieval is the task of finding relevant documents for a query."
  STS:
    icon: "☘️"
    metric: cos_sim_spearman
    metric_description: "Spearman correlation based on cosine similarity"
    task_description: "Semantic Textual Similarity is the task of determining how similar two texts are."
  Summarization:
    icon: "πŸ“œ"
    metric: cos_sim_spearman
    metric_description: "Spearman correlation	based on cosine similarity"
    task_description: "Summarization is the task of generating a summary of a text."
  InstructionRetrieval:
    icon: "πŸ”ŽπŸ“‹"
    metric: "p-MRR"
    metric_description: "paired mean reciprocal rank"
    task_description: "Retrieval w/Instructions is the task of finding relevant documents for a query that has detailed instructions."
boards:
  en:
    title: English
    language_long: "English"
    has_overall: true
    acronym: null
    icon: null
    special_icons: null
    credits: null
    tasks:
      Classification:
        - AmazonCounterfactualClassification (en)
        - AmazonPolarityClassification
        - AmazonReviewsClassification (en)
        - Banking77Classification
        - EmotionClassification
        - ImdbClassification
        - MassiveIntentClassification (en)
        - MassiveScenarioClassification (en)
        - MTOPDomainClassification (en)
        - MTOPIntentClassification (en)
        - ToxicConversationsClassification
        - TweetSentimentExtractionClassification
      Clustering:
        - ArxivClusteringP2P
        - ArxivClusteringS2S
        - BiorxivClusteringP2P
        - BiorxivClusteringS2S
        - MedrxivClusteringP2P
        - MedrxivClusteringS2S
        - RedditClustering
        - RedditClusteringP2P
        - StackExchangeClustering
        - StackExchangeClusteringP2P
        - TwentyNewsgroupsClustering
      PairClassification:
        - SprintDuplicateQuestions
        - TwitterSemEval2015
        - TwitterURLCorpus
      Reranking:
        - AskUbuntuDupQuestions
        - MindSmallReranking
        - SciDocsRR
        - StackOverflowDupQuestions
      Retrieval:
        - ArguAna
        - ClimateFEVER
        - CQADupstackRetrieval
        - DBPedia
        - FEVER
        - FiQA2018
        - HotpotQA
        - MSMARCO
        - NFCorpus
        - NQ
        - QuoraRetrieval
        - SCIDOCS
        - SciFact
        - Touche2020
        - TRECCOVID
      STS:
        - BIOSSES
        - SICK-R
        - STS12
        - STS13
        - STS14
        - STS15
        - STS16
        - STS17 (en-en)
        - STS22 (en)
        - STSBenchmark
      Summarization:
        - SummEval
  en-x:
    title: "English-X"
    language_long: "117 (Pairs of: English & other language)"
    has_overall: false
    acronym: null
    icon: null
    special_icons: null
    credits: null
    tasks:
      BitextMining: ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
  zh:
    title: Chinese
    language_long: Chinese
    has_overall: true
    acronym: C-MTEB
    icon: "πŸ‡¨πŸ‡³"
    special_icons:
      Classification: "🧑"
    credits: "[FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding)"
    tasks:
      Classification:
        - AmazonReviewsClassification (zh)
        - IFlyTek
        - JDReview
        - MassiveIntentClassification (zh-CN)
        - MassiveScenarioClassification (zh-CN)
        - MultilingualSentiment
        - OnlineShopping
        - TNews
        - Waimai
      Clustering:
        - CLSClusteringP2P
        - CLSClusteringS2S
        - ThuNewsClusteringP2P
        - ThuNewsClusteringS2S
      PairClassification:
        - Cmnli
        - Ocnli
      Reranking:
        - CMedQAv1
        - CMedQAv2
        - MMarcoReranking
        - T2Reranking
      Retrieval:
        - CmedqaRetrieval
        - CovidRetrieval
        - DuRetrieval
        - EcomRetrieval
        - MedicalRetrieval
        - MMarcoRetrieval
        - T2Retrieval
        - VideoRetrieval
      STS:
        - AFQMC
        - ATEC
        - BQ
        - LCQMC
        - PAWSX
        - QBQTC
        - STS22 (zh)
        - STSB
  da:
    title: Danish
    language_long: Danish
    has_overall: false
    acronym: null
    icon: "πŸ‡©πŸ‡°"
    special_icons:
      Classification: "🀍"
    credits: "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
    tasks:
      BitextMining:
        - BornholmBitextMining
      Classification:
        - AngryTweetsClassification
        - DanishPoliticalCommentsClassification
        - DKHateClassification
        - LccSentimentClassification
        - MassiveIntentClassification (da)
        - MassiveScenarioClassification (da)
        - NordicLangClassification
        - ScalaDaClassification
  fr:
    title: French
    language_long: "French"
    has_overall: true
    acronym: "F-MTEB"
    icon: "πŸ‡«πŸ‡·"
    special_icons:
      Classification: "πŸ’™"
    credits: "[Lyon-NLP](https://github.com/Lyon-NLP): [Gabriel Sequeira](https://github.com/GabrielSequeira), [Imene Kerboua](https://github.com/imenelydiaker), [Wissam Siblini](https://github.com/wissam-sib), [Mathieu Ciancone](https://github.com/MathieuCiancone), [Marion Schaeffer](https://github.com/schmarion)"
    tasks:
      Classification:
        - AmazonReviewsClassification (fr)
        - MasakhaNEWSClassification (fra)
        - MassiveIntentClassification (fr)
        - MassiveScenarioClassification (fr)
        - MTOPDomainClassification (fr)
        - MTOPIntentClassification (fr)
      Clustering:
        - AlloProfClusteringP2P
        - AlloProfClusteringS2S
        - HALClusteringS2S
        - MLSUMClusteringP2P (fr)
        - MLSUMClusteringS2S (fr)
        - MasakhaNEWSClusteringP2P (fra)
        - MasakhaNEWSClusteringS2S (fra)
      PairClassification:
        - OpusparcusPC (fr)
        - PawsX (fr)
      Reranking:
        - AlloprofReranking
        - SyntecReranking
      Retrieval:
        - AlloprofRetrieval
        - BSARDRetrieval
        - MintakaRetrieval (fr)
        - SyntecRetrieval
        - XPQARetrieval (fr)
      STS:
        - STS22 (fr)
        - STSBenchmarkMultilingualSTS (fr)
        - SICKFr
      Summarization:
        - SummEvalFr
  'no':
    title: Norwegian
    language_long: "Norwegian BokmΓ₯l"
    has_overall: false
    acronym: null
    icon: "πŸ‡³πŸ‡΄"
    special_icons:
      Classification: "πŸ’™"
    credits: "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
    tasks:
      Classification: &id001
        - NoRecClassification
        - NordicLangClassification
        - NorwegianParliament
        - MassiveIntentClassification (nb)
        - MassiveScenarioClassification (nb)
        - ScalaNbClassification
  instructions:
    title: English
    language_long: "English"
    has_overall: false
    acronym: null
    icon: null
    credits: "[Orion Weller, FollowIR](https://arxiv.org/abs/2403.15246)"
    tasks:
      InstructionRetrieval:
      - Robust04InstructionRetrieval
      - News21InstructionRetrieval
      - Core17InstructionRetrieval
  law:
    title: Law
    language_long: "English, German, Chinese"
    has_overall: false
    acronym: null
    icon: "βš–οΈ"
    special_icons: null
    credits: "[Voyage AI](https://www.voyageai.com/)"
    tasks:
      Retrieval:
        - AILACasedocs
        - AILAStatutes
        - GerDaLIRSmall
        - LeCaRDv2
        - LegalBenchConsumerContractsQA
        - LegalBenchCorporateLobbying
        - LegalQuAD
        - LegalSummarization
  longembed:
    title: LongEmbed
    language_long: "English"
    has_overall: false
    acronym: null
    icon: "πŸ“š"
    special_icons: null
    credits: "[LongEmbed](https://arxiv.org/abs/2404.12096v2)"
    metric: nDCG@10 (for NarrativeQA, QMSum, SummScreenFD, WikimQA) & nDCG@1 (for passkey and needle)
    tasks:
      Retrieval:
        - LEMBNarrativeQARetrieval
        - LEMBNeedleRetrieval
        - LEMBPasskeyRetrieval
        - LEMBQMSumRetrieval
        - LEMBSummScreenFDRetrieval
        - LEMBWikimQARetrieval
  de:
    title: German
    language_long: "German"
    has_overall: false
    acronym: null
    icon: "πŸ‡©πŸ‡ͺ"
    special_icons: null
    credits: "[Silvan](https://github.com/slvnwhrl)"
    tasks:
      Clustering:
      - BlurbsClusteringP2P
      - BlurbsClusteringS2S
      - TenKGnadClusteringP2P
      - TenKGnadClusteringS2S
  pl:
    title: Polish
    language_long: Polish
    has_overall: true
    acronym: null
    icon: "πŸ‡΅πŸ‡±"
    special_icons:
      Classification: "🀍"
    credits: "[RafaΕ‚ PoΕ›wiata](https://github.com/rafalposwiata)"
    tasks:
      Classification:
        - AllegroReviews
        - CBD
        - MassiveIntentClassification (pl)
        - MassiveScenarioClassification (pl)
        - PAC
        - PolEmo2.0-IN
        - PolEmo2.0-OUT
      Clustering:
        - 8TagsClustering
      PairClassification:
        - CDSC-E
        - PPC
        - PSC
        - SICK-E-PL
      Retrieval:
        - ArguAna-PL
        - DBPedia-PL
        - FiQA-PL
        - HotpotQA-PL
        - MSMARCO-PL
        - NFCorpus-PL
        - NQ-PL
        - Quora-PL
        - SCIDOCS-PL
        - SciFact-PL
        - TRECCOVID-PL
      STS:
        - CDSC-R
        - SICK-R-PL
        - STS22 (pl)
  se:
    title: Swedish
    language_long: Swedish
    has_overall: false
    acronym: null
    icon: "πŸ‡ΈπŸ‡ͺ"
    special_icons:
      Classification: "πŸ’›"
    credits: "[Kenneth Enevoldsen](https://github.com/KennethEnevoldsen), [scandinavian-embedding-benchmark](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)"
    tasks:
      Classification:
        - NoRecClassification
        - NordicLangClassification
        - NorwegianParliament
        - MassiveIntentClassification (nb)
        - MassiveScenarioClassification (nb)
        - ScalaNbClassification
  other-cls:
    title: "Other Languages"
    language_long: "47 (Only languages not included in the other tabs)"
    has_overall: false
    acronym: null
    icon: null
    special_icons:
      Classification: "πŸ’œπŸ’šπŸ’™"
    credits: null
    tasks:
      Classification: ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-TW)']
  other-sts:
    title: Other
    language_long: "Arabic, Chinese, Dutch, English, French, German, Italian, Korean, Polish, Russian, Spanish (Only language combos not included in the other tabs)"
    has_overall: false
    acronym: null
    icon: null
    special_icons: null
    credits: null
    tasks:
      STS: ["STS17 (ar-ar)", "STS17 (en-ar)", "STS17 (en-de)", "STS17 (en-tr)", "STS17 (es-en)", "STS17 (es-es)", "STS17 (fr-en)", "STS17 (it-en)", "STS17 (ko-ko)", "STS17 (nl-en)", "STS22 (ar)", "STS22 (de)", "STS22 (de-en)", "STS22 (de-fr)", "STS22 (de-pl)", "STS22 (es)", "STS22 (es-en)", "STS22 (es-it)", "STS22 (fr)", "STS22 (fr-pl)", "STS22 (it)", "STS22 (pl)", "STS22 (pl-en)", "STS22 (ru)", "STS22 (tr)", "STS22 (zh-en)", "STSBenchmark"]