Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
eduagarcia
commited on
Commit
·
bbfe97c
1
Parent(s):
fd4838e
Caches model cards and dim_seq_size while first intiating the leaderboard
Browse files
app.py
CHANGED
@@ -151,7 +151,10 @@ def add_rank(df):
|
|
151 |
df.fillna("", inplace=True)
|
152 |
return df
|
153 |
|
154 |
-
|
|
|
|
|
|
|
155 |
api = API
|
156 |
models = api.list_models(filter="mteb")
|
157 |
# Initialize list to models that we cannot fetch metadata from
|
@@ -174,12 +177,15 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
174 |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
175 |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
176 |
df_list.append(res)
|
177 |
-
|
178 |
for model in models:
|
179 |
if model.modelId in MODELS_TO_SKIP: continue
|
180 |
-
print("MODEL", model)
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
183 |
if "model-index" not in meta:
|
184 |
continue
|
185 |
# meta['model-index'][0]["results"] is list of elements like:
|
@@ -211,9 +217,11 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
211 |
if add_emb_dim:
|
212 |
try:
|
213 |
# Fails on gated repos, so we only include scores for them
|
214 |
-
|
|
|
|
|
215 |
except:
|
216 |
-
|
217 |
df_list.append(out)
|
218 |
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
|
219 |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
@@ -231,7 +239,9 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
231 |
df.fillna("", inplace=True)
|
232 |
return df
|
233 |
|
234 |
-
|
|
|
|
|
235 |
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
236 |
DATA_OVERALL = get_mteb_data(
|
237 |
tasks=list(task_dict.keys()),
|
@@ -239,6 +249,7 @@ def get_mteb_average(task_dict: dict):
|
|
239 |
fillna=False,
|
240 |
add_emb_dim=True,
|
241 |
rank=False,
|
|
|
242 |
)
|
243 |
# Debugging:
|
244 |
# DATA_OVERALL.to_csv("overall.csv")
|
@@ -277,7 +288,7 @@ for board, board_config in BOARDS_CONFIG.items():
|
|
277 |
"data_tasks": {}
|
278 |
}
|
279 |
if board_config["has_overall"]:
|
280 |
-
data_overall, data_tasks = get_mteb_average(board_config["tasks"])
|
281 |
boards_data[board]["data_overall"] = data_overall
|
282 |
boards_data[board]["data_tasks"] = data_tasks
|
283 |
all_data_tasks.extend(data_tasks.values())
|
@@ -287,7 +298,7 @@ for board, board_config in BOARDS_CONFIG.items():
|
|
287 |
if len(task_category_list) > 1:
|
288 |
columns.append("Average")
|
289 |
print(board, task_category, task_category_list)
|
290 |
-
data_task_category = get_mteb_data([task_category], [], task_category_list)[columns + task_category_list]
|
291 |
boards_data[board]["data_tasks"][task_category] = data_task_category
|
292 |
all_data_tasks.append(data_task_category)
|
293 |
|
|
|
151 |
df.fillna("", inplace=True)
|
152 |
return df
|
153 |
|
154 |
+
MODEL_CARD_METADATA = {}
|
155 |
+
MODEL_EMB_DIM = {}
|
156 |
+
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True):
|
157 |
+
global MODEL_CARD_METADATA, MODEL_EMB_DIM
|
158 |
api = API
|
159 |
models = api.list_models(filter="mteb")
|
160 |
# Initialize list to models that we cannot fetch metadata from
|
|
|
177 |
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
|
178 |
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
|
179 |
df_list.append(res)
|
180 |
+
|
181 |
for model in models:
|
182 |
if model.modelId in MODELS_TO_SKIP: continue
|
183 |
+
print("MODEL", model.modelId)
|
184 |
+
if model.modelId not in MODEL_CARD_METADATA or refresh:
|
185 |
+
readme_path = hf_hub_download(model.modelId, filename="README.md")
|
186 |
+
meta = metadata_load(readme_path)
|
187 |
+
MODEL_CARD_METADATA[model.modelId] = meta
|
188 |
+
meta = MODEL_CARD_METADATA[model.modelId]
|
189 |
if "model-index" not in meta:
|
190 |
continue
|
191 |
# meta['model-index'][0]["results"] is list of elements like:
|
|
|
217 |
if add_emb_dim:
|
218 |
try:
|
219 |
# Fails on gated repos, so we only include scores for them
|
220 |
+
if model.modelId not in MODEL_EMB_DIM or refresh:
|
221 |
+
MODEL_EMB_DIM[model.modelId] = get_dim_seq_size(model)
|
222 |
+
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = MODEL_EMB_DIM[model.modelId]
|
223 |
except:
|
224 |
+
MODEL_EMB_DIM[model.modelId] = None, None, None, None
|
225 |
df_list.append(out)
|
226 |
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
|
227 |
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
|
|
|
239 |
df.fillna("", inplace=True)
|
240 |
return df
|
241 |
|
242 |
+
# Get dict with a task list for each task category
|
243 |
+
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
|
244 |
+
def get_mteb_average(task_dict: dict, refresh=True):
|
245 |
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
|
246 |
DATA_OVERALL = get_mteb_data(
|
247 |
tasks=list(task_dict.keys()),
|
|
|
249 |
fillna=False,
|
250 |
add_emb_dim=True,
|
251 |
rank=False,
|
252 |
+
refresh=refresh
|
253 |
)
|
254 |
# Debugging:
|
255 |
# DATA_OVERALL.to_csv("overall.csv")
|
|
|
288 |
"data_tasks": {}
|
289 |
}
|
290 |
if board_config["has_overall"]:
|
291 |
+
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False)
|
292 |
boards_data[board]["data_overall"] = data_overall
|
293 |
boards_data[board]["data_tasks"] = data_tasks
|
294 |
all_data_tasks.extend(data_tasks.values())
|
|
|
298 |
if len(task_category_list) > 1:
|
299 |
columns.append("Average")
|
300 |
print(board, task_category, task_category_list)
|
301 |
+
data_task_category = get_mteb_data([task_category], [], task_category_list, refresh=False)[columns + task_category_list]
|
302 |
boards_data[board]["data_tasks"][task_category] = data_task_category
|
303 |
all_data_tasks.append(data_task_category)
|
304 |
|