Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
from diffusers import AuraFlowPipeline | |
import torch | |
from gradio_imageslider import ImageSlider | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
#torch.set_float32_matmul_precision("high") | |
#torch._inductor.config.conv_1x1_as_mm = True | |
#torch._inductor.config.coordinate_descent_tuning = True | |
#torch._inductor.config.epilogue_fusion = False | |
#torch._inductor.config.coordinate_descent_check_all_directions = True | |
#pipe_v1 = AuraFlowPipeline.from_pretrained( | |
# "fal/AuraFlow", | |
# torch_dtype=torch.float16 | |
#).to("cuda") | |
pipe_v2 = AuraFlowPipeline.from_pretrained( | |
"fal/AuraFlow-v0.2", | |
torch_dtype=torch.float16 | |
).to("cuda") | |
pipe = AuraFlowPipeline.from_pretrained( | |
"fal/AuraFlow-v0.3", | |
torch_dtype=torch.float16 | |
).to("cuda") | |
#pipe.transformer.to(memory_format=torch.channels_last) | |
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True) | |
#pipe.transformer.to(memory_format=torch.channels_last) | |
#pipe.vae.to(memory_format=torch.channels_last) | |
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
#pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer_example(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, model_version="0.2", comparison_mode=False, progress=gr.Progress(track_tqdm=True)): | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width = width, | |
height = height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
return image, seed | |
def infer(prompt, | |
negative_prompt="", | |
seed=42, | |
randomize_seed=False, | |
width=1024, | |
height=1024, | |
guidance_scale=5.0, | |
num_inference_steps=28, | |
model_version="0.3", | |
comparison_mode=False, | |
progress=gr.Progress(track_tqdm=True) | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if(comparison_mode): | |
image_1 = pipe_v2( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
generator = torch.Generator().manual_seed(seed) | |
image_2 = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
return gr.update(visible=False), gr.update(visible=True, value=(image_1, image_2)), seed | |
if(model_version == "0.1"): | |
image = pipe_v1( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
elif(model_version == "0.2"): | |
image = pipe_v2( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
else: | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
generator = generator | |
).images[0] | |
return gr.update(visible=True, value=image), gr.update(visible=False), seed | |
examples = [ | |
"A photo of a lavender cat", | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
"A delicious ceviche cheesecake slice", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# AuraFlow 0.3 | |
Demo of the [AuraFlow 0.3](https://huggingface.co/fal/AuraFlow-v0.3) 6.8B parameters open source diffusion transformer model | |
[[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
result_compare = ImageSlider(visible=False, label="Left 0.2, Right 0.3") | |
comparison_mode = gr.Checkbox(label="Comparison mode", info="Compare v0.2 with v0.3", value=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
model_version = gr.Dropdown( | |
["0.2", "0.3"], label="Model version", value="0.3" | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples = examples, | |
fn = infer_example, | |
inputs = [prompt], | |
outputs = [result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit, negative_prompt.submit], | |
fn = infer, | |
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_version, comparison_mode], | |
outputs = [result, result_compare, seed] | |
) | |
demo.queue().launch() |