Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,106 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import AuraFlowPipeline
|
5 |
import torch
|
6 |
-
import
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#torch._inductor.config.epilogue_fusion = False
|
15 |
-
#torch._inductor.config.coordinate_descent_check_all_directions = True
|
16 |
-
|
17 |
-
pipe = AuraFlowPipeline.from_pretrained(
|
18 |
-
"fal/AuraFlow",
|
19 |
-
torch_dtype=torch.float16
|
20 |
-
).to("cuda")
|
21 |
|
22 |
-
|
23 |
-
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
|
24 |
-
#pipe.transformer.to(memory_format=torch.channels_last)
|
25 |
-
#pipe.vae.to(memory_format=torch.channels_last)
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
MAX_SEED = np.iinfo(np.int32).max
|
31 |
MAX_IMAGE_SIZE = 1024
|
32 |
|
33 |
-
|
34 |
-
def infer(prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
35 |
-
|
36 |
if randomize_seed:
|
37 |
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
40 |
|
41 |
image = pipe(
|
42 |
-
prompt
|
43 |
-
|
44 |
-
|
45 |
height=height,
|
46 |
-
|
47 |
-
num_inference_steps
|
48 |
-
|
49 |
-
|
|
|
|
|
50 |
|
51 |
return image, seed
|
52 |
|
53 |
examples = [
|
54 |
-
"A photo of a lavender cat",
|
55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
56 |
-
"An astronaut riding a green horse",
|
57 |
-
"A delicious ceviche cheesecake slice",
|
58 |
]
|
59 |
|
60 |
css="""
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
-
max-width:
|
64 |
}
|
65 |
"""
|
66 |
-
|
67 |
-
if torch.cuda.is_available():
|
68 |
-
power_device = "GPU"
|
69 |
-
else:
|
70 |
-
power_device = "CPU"
|
71 |
-
|
72 |
with gr.Blocks(css=css) as demo:
|
73 |
-
|
74 |
with gr.Column(elem_id="col-container"):
|
75 |
gr.Markdown(f"""
|
76 |
-
#
|
77 |
-
Demo of the
|
78 |
-
[[blog](https://blog.fal.ai/auraflow/)] [[model](https://huggingface.co/fal/AuraFlow)] [[fal](https://fal.ai/models/fal-ai/aura-flow)]
|
79 |
""")
|
80 |
|
81 |
with gr.Row():
|
82 |
-
|
83 |
prompt = gr.Text(
|
84 |
label="Prompt",
|
85 |
show_label=False,
|
@@ -87,19 +108,18 @@ with gr.Blocks(css=css) as demo:
|
|
87 |
placeholder="Enter your prompt",
|
88 |
container=False,
|
89 |
)
|
90 |
-
|
91 |
run_button = gr.Button("Run", scale=0)
|
92 |
|
93 |
-
|
|
|
|
|
94 |
|
95 |
with gr.Accordion("Advanced Settings", open=False):
|
96 |
-
|
97 |
negative_prompt = gr.Text(
|
98 |
label="Negative prompt",
|
99 |
max_lines=1,
|
100 |
placeholder="Enter a negative prompt",
|
101 |
)
|
102 |
-
|
103 |
seed = gr.Slider(
|
104 |
label="Seed",
|
105 |
minimum=0,
|
@@ -107,11 +127,8 @@ with gr.Blocks(css=css) as demo:
|
|
107 |
step=1,
|
108 |
value=0,
|
109 |
)
|
110 |
-
|
111 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
112 |
-
|
113 |
with gr.Row():
|
114 |
-
|
115 |
width = gr.Slider(
|
116 |
label="Width",
|
117 |
minimum=256,
|
@@ -119,7 +136,6 @@ with gr.Blocks(css=css) as demo:
|
|
119 |
step=32,
|
120 |
value=1024,
|
121 |
)
|
122 |
-
|
123 |
height = gr.Slider(
|
124 |
label="Height",
|
125 |
minimum=256,
|
@@ -127,9 +143,7 @@ with gr.Blocks(css=css) as demo:
|
|
127 |
step=32,
|
128 |
value=1024,
|
129 |
)
|
130 |
-
|
131 |
with gr.Row():
|
132 |
-
|
133 |
guidance_scale = gr.Slider(
|
134 |
label="Guidance scale",
|
135 |
minimum=0.0,
|
@@ -137,28 +151,34 @@ with gr.Blocks(css=css) as demo:
|
|
137 |
step=0.1,
|
138 |
value=5.0,
|
139 |
)
|
140 |
-
|
141 |
num_inference_steps = gr.Slider(
|
142 |
label="Number of inference steps",
|
143 |
minimum=1,
|
144 |
-
maximum=
|
145 |
step=1,
|
146 |
-
value=
|
147 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
gr.Examples(
|
150 |
-
examples
|
151 |
-
fn
|
152 |
-
inputs
|
153 |
-
outputs
|
154 |
cache_examples="lazy"
|
155 |
)
|
156 |
|
157 |
gr.on(
|
158 |
-
triggers=[run_button.click, prompt.submit
|
159 |
-
fn
|
160 |
-
inputs
|
161 |
-
outputs
|
162 |
)
|
163 |
|
164 |
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import os
|
7 |
|
8 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
|
9 |
+
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline
|
10 |
+
from kolors.models.modeling_chatglm import ChatGLMModel
|
11 |
+
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
|
12 |
+
from kolors.models.unet_2d_condition import UNet2DConditionModel
|
13 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
from huggingface_hub import snapshot_download
|
|
|
|
|
|
|
16 |
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
19 |
+
ckpt_dir = f'{root_dir}/weights/Kolors'
|
20 |
+
|
21 |
+
snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir)
|
22 |
+
snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus")
|
23 |
+
|
24 |
+
# Load models
|
25 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
26 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
27 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
28 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
29 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
30 |
+
|
31 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
32 |
+
f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder',
|
33 |
+
ignore_mismatched_sizes=True
|
34 |
+
).to(dtype=torch.float16, device=device)
|
35 |
+
|
36 |
+
ip_img_size = 336
|
37 |
+
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
|
38 |
+
|
39 |
+
pipe = StableDiffusionXLPipeline(
|
40 |
+
vae=vae,
|
41 |
+
text_encoder=text_encoder,
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
unet=unet,
|
44 |
+
scheduler=scheduler,
|
45 |
+
image_encoder=image_encoder,
|
46 |
+
feature_extractor=clip_image_processor,
|
47 |
+
force_zeros_for_empty_prompt=False
|
48 |
+
)
|
49 |
+
|
50 |
+
pipe = pipe.to(device)
|
51 |
+
#pipe.enable_model_cpu_offload()
|
52 |
+
|
53 |
+
if hasattr(pipe.unet, 'encoder_hid_proj'):
|
54 |
+
pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj
|
55 |
+
|
56 |
+
pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
|
57 |
|
58 |
MAX_SEED = np.iinfo(np.int32).max
|
59 |
MAX_IMAGE_SIZE = 1024
|
60 |
|
61 |
+
def infer(prompt, ip_adapter_image, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, ip_adapter_scale=0.5, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
62 |
if randomize_seed:
|
63 |
seed = random.randint(0, MAX_SEED)
|
64 |
+
|
65 |
+
generator = torch.Generator(device="cpu").manual_seed(seed)
|
66 |
+
|
67 |
+
pipe.set_ip_adapter_scale([ip_adapter_scale])
|
68 |
|
69 |
image = pipe(
|
70 |
+
prompt=prompt,
|
71 |
+
ip_adapter_image=[ip_adapter_image],
|
72 |
+
negative_prompt=negative_prompt,
|
73 |
height=height,
|
74 |
+
width=width,
|
75 |
+
num_inference_steps=num_inference_steps,
|
76 |
+
guidance_scale=guidance_scale,
|
77 |
+
num_images_per_prompt=1,
|
78 |
+
generator=generator,
|
79 |
+
).images[0]
|
80 |
|
81 |
return image, seed
|
82 |
|
83 |
examples = [
|
84 |
+
["A photo of a lavender cat", "https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Cat_November_2010-1a.jpg/640px-Cat_November_2010-1a.jpg"],
|
85 |
+
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "https://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Astronaut_EVA.jpg/640px-Astronaut_EVA.jpg"],
|
86 |
+
["An astronaut riding a green horse", "https://upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Haflinger_in-motion.jpg/640px-Haflinger_in-motion.jpg"],
|
87 |
+
["A delicious ceviche cheesecake slice", "https://upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Ceviche_mixto.jpg/640px-Ceviche_mixto.jpg"],
|
88 |
]
|
89 |
|
90 |
css="""
|
91 |
#col-container {
|
92 |
margin: 0 auto;
|
93 |
+
max-width: 720px;
|
94 |
}
|
95 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
with gr.Blocks(css=css) as demo:
|
|
|
97 |
with gr.Column(elem_id="col-container"):
|
98 |
gr.Markdown(f"""
|
99 |
+
# Kolors Demo
|
100 |
+
Demo of the Kolors model with IP-Adapter integration
|
|
|
101 |
""")
|
102 |
|
103 |
with gr.Row():
|
|
|
104 |
prompt = gr.Text(
|
105 |
label="Prompt",
|
106 |
show_label=False,
|
|
|
108 |
placeholder="Enter your prompt",
|
109 |
container=False,
|
110 |
)
|
|
|
111 |
run_button = gr.Button("Run", scale=0)
|
112 |
|
113 |
+
with gr.Row():
|
114 |
+
ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil")
|
115 |
+
result = gr.Image(label="Result", show_label=False)
|
116 |
|
117 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
118 |
negative_prompt = gr.Text(
|
119 |
label="Negative prompt",
|
120 |
max_lines=1,
|
121 |
placeholder="Enter a negative prompt",
|
122 |
)
|
|
|
123 |
seed = gr.Slider(
|
124 |
label="Seed",
|
125 |
minimum=0,
|
|
|
127 |
step=1,
|
128 |
value=0,
|
129 |
)
|
|
|
130 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
131 |
with gr.Row():
|
|
|
132 |
width = gr.Slider(
|
133 |
label="Width",
|
134 |
minimum=256,
|
|
|
136 |
step=32,
|
137 |
value=1024,
|
138 |
)
|
|
|
139 |
height = gr.Slider(
|
140 |
label="Height",
|
141 |
minimum=256,
|
|
|
143 |
step=32,
|
144 |
value=1024,
|
145 |
)
|
|
|
146 |
with gr.Row():
|
|
|
147 |
guidance_scale = gr.Slider(
|
148 |
label="Guidance scale",
|
149 |
minimum=0.0,
|
|
|
151 |
step=0.1,
|
152 |
value=5.0,
|
153 |
)
|
|
|
154 |
num_inference_steps = gr.Slider(
|
155 |
label="Number of inference steps",
|
156 |
minimum=1,
|
157 |
+
maximum=100,
|
158 |
step=1,
|
159 |
+
value=50,
|
160 |
)
|
161 |
+
ip_adapter_scale = gr.Slider(
|
162 |
+
label="IP-Adapter Scale",
|
163 |
+
minimum=0.0,
|
164 |
+
maximum=1.0,
|
165 |
+
step=0.01,
|
166 |
+
value=0.5,
|
167 |
+
)
|
168 |
|
169 |
gr.Examples(
|
170 |
+
examples=examples,
|
171 |
+
fn=infer,
|
172 |
+
inputs=[prompt, ip_adapter_image],
|
173 |
+
outputs=[result, seed],
|
174 |
cache_examples="lazy"
|
175 |
)
|
176 |
|
177 |
gr.on(
|
178 |
+
triggers=[run_button.click, prompt.submit],
|
179 |
+
fn=infer,
|
180 |
+
inputs=[prompt, ip_adapter_image, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ip_adapter_scale],
|
181 |
+
outputs=[result, seed]
|
182 |
)
|
183 |
|
184 |
demo.queue().launch()
|