Spaces:
Running
on
L40S
Running
on
L40S
import torch | |
from diffusers.utils import load_image, check_min_version | |
from controlnet_flux import FluxControlNetModel | |
from transformer_flux import FluxTransformer2DModel | |
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
check_min_version("0.30.2") | |
# Set image path , mask path and prompt | |
image_path='https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/bucket.png', | |
mask_path='https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/bucket_mask.jpeg', | |
prompt='a person wearing a white shoe, carrying a white bucket with text "FLUX" on it' | |
# Build pipeline | |
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16) | |
transformer = FluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16 | |
) | |
pipe = FluxControlNetInpaintingPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
controlnet=controlnet, | |
transformer=transformer, | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.transformer.to(torch.bfloat16) | |
pipe.controlnet.to(torch.bfloat16) | |
# Load image and mask | |
size = (768, 768) | |
image = load_image(image_path).convert("RGB").resize(size) | |
mask = load_image(mask_path).convert("RGB").resize(size) | |
generator = torch.Generator(device="cuda").manual_seed(24) | |
# Inpaint | |
result = pipe( | |
prompt=prompt, | |
height=size[1], | |
width=size[0], | |
control_image=image, | |
control_mask=mask, | |
num_inference_steps=28, | |
generator=generator, | |
controlnet_conditioning_scale=0.9, | |
guidance_scale=3.5, | |
negative_prompt="", | |
true_guidance_scale=3.5 | |
).images[0] | |
result.save('flux_inpaint.png') | |
print("Successfully inpaint image") | |