Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,048 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
import torch.nn.functional as F
from torchvision import transforms
import os
from contextlib import nullcontext
import comfy.model_management as mm
from comfy.utils import ProgressBar, load_torch_file
import folder_paths
from .depth_anything_v2.dpt import DepthAnythingV2
from contextlib import nullcontext
try:
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
is_accelerate_available = True
except:
is_accelerate_available = False
pass
class DownloadAndLoadDepthAnythingV2Model:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": (
[
'depth_anything_v2_vits_fp16.safetensors',
'depth_anything_v2_vits_fp32.safetensors',
'depth_anything_v2_vitb_fp16.safetensors',
'depth_anything_v2_vitb_fp32.safetensors',
'depth_anything_v2_vitl_fp16.safetensors',
'depth_anything_v2_vitl_fp32.safetensors',
'depth_anything_v2_metric_hypersim_vitl_fp32.safetensors',
'depth_anything_v2_metric_vkitti_vitl_fp32.safetensors'
],
{
"default": 'depth_anything_v2_vitl_fp32.safetensors'
}),
},
}
RETURN_TYPES = ("DAMODEL",)
RETURN_NAMES = ("da_v2_model",)
FUNCTION = "loadmodel"
CATEGORY = "DepthAnythingV2"
DESCRIPTION = """
Models autodownload to `ComfyUI\models\depthanything` from
https://huggingface.co/Kijai/DepthAnythingV2-safetensors/tree/main
fp16 reduces quality by a LOT, not recommended.
"""
def loadmodel(self, model):
device = mm.get_torch_device()
dtype = torch.float16 if "fp16" in model else torch.float32
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
#'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
custom_config = {
'model_name': model,
}
if not hasattr(self, 'model') or self.model == None or custom_config != self.current_config:
self.current_config = custom_config
download_path = os.path.join(folder_paths.models_dir, "depthanything")
model_path = os.path.join(download_path, model)
if not os.path.exists(model_path):
print(f"Downloading model to: {model_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="Kijai/DepthAnythingV2-safetensors",
allow_patterns=[f"*{model}*"],
local_dir=download_path,
local_dir_use_symlinks=False)
print(f"Loading model from: {model_path}")
if "vitl" in model:
encoder = "vitl"
elif "vitb" in model:
encoder = "vitb"
elif "vits" in model:
encoder = "vits"
if "hypersim" in model:
max_depth = 20.0
else:
max_depth = 80.0
with (init_empty_weights() if is_accelerate_available else nullcontext()):
if 'metric' in model:
self.model = DepthAnythingV2(**{**model_configs[encoder], 'is_metric': True, 'max_depth': max_depth})
else:
self.model = DepthAnythingV2(**model_configs[encoder])
state_dict = load_torch_file(model_path)
if is_accelerate_available:
for key in state_dict:
set_module_tensor_to_device(self.model, key, device=device, dtype=dtype, value=state_dict[key])
else:
self.model.load_state_dict(state_dict)
self.model.eval()
da_model = {
"model": self.model,
"dtype": dtype,
"is_metric": self.model.is_metric
}
return (da_model,)
class DepthAnything_V2:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"da_model": ("DAMODEL", ),
"images": ("IMAGE", ),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES =("image",)
FUNCTION = "process"
CATEGORY = "DepthAnythingV2"
DESCRIPTION = """
https://depth-anything-v2.github.io
"""
def process(self, da_model, images):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
model = da_model['model']
dtype=da_model['dtype']
B, H, W, C = images.shape
#images = images.to(device)
images = images.permute(0, 3, 1, 2)
orig_H, orig_W = H, W
if W % 14 != 0:
W = W - (W % 14)
if H % 14 != 0:
H = H - (H % 14)
if orig_H % 14 != 0 or orig_W % 14 != 0:
images = F.interpolate(images, size=(H, W), mode="bilinear")
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
normalized_images = normalize(images)
pbar = ProgressBar(B)
out = []
model.to(device)
autocast_condition = (dtype != torch.float32) and not mm.is_device_mps(device)
with torch.autocast(mm.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():
for img in normalized_images:
depth = model(img.unsqueeze(0).to(device))
depth = (depth - depth.min()) / (depth.max() - depth.min())
out.append(depth.cpu())
pbar.update(1)
model.to(offload_device)
depth_out = torch.cat(out, dim=0)
depth_out = depth_out.unsqueeze(-1).repeat(1, 1, 1, 3).cpu().float()
final_H = (orig_H // 2) * 2
final_W = (orig_W // 2) * 2
if depth_out.shape[1] != final_H or depth_out.shape[2] != final_W:
depth_out = F.interpolate(depth_out.permute(0, 3, 1, 2), size=(final_H, final_W), mode="bilinear").permute(0, 2, 3, 1)
depth_out = (depth_out - depth_out.min()) / (depth_out.max() - depth_out.min())
depth_out = torch.clamp(depth_out, 0, 1)
if da_model['is_metric']:
depth_out = 1 - depth_out
return (depth_out,)
NODE_CLASS_MAPPINGS = {
"DepthAnything_V2": DepthAnything_V2,
"DownloadAndLoadDepthAnythingV2Model": DownloadAndLoadDepthAnythingV2Model
}
NODE_DISPLAY_NAME_MAPPINGS = {
"DepthAnything_V2": "Depth Anything V2",
"DownloadAndLoadDepthAnythingV2Model": "DownloadAndLoadDepthAnythingV2Model"
} |