Spaces:
Sleeping
Sleeping
File size: 49,157 Bytes
b24d496 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
import gc
import traceback
from legal_info_search_utils.rules_utils import use_rules
from itertools import islice
import os
import torch
import numpy as np
from faiss import IndexFlatIP
from datasets import Dataset as dataset
from transformers import AutoTokenizer, AutoModel
from legal_info_search_utils.utils import query_tokenization, query_embed_extraction
import requests
import re
import json
import pymorphy3
from torch.cuda.amp import autocast
from elasticsearch_module import search_company
import torch.nn.functional as F
import pickle
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
from llm.vllm_api import LlmApi, LlmParams
global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")
global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")
data_path_consult = global_data_path + "external_data"
internal_docs_data_path = global_data_path + "nmd_full"
spec_internal_docs_data_path = global_data_path + "nmd_short"
accounting_data_path = global_data_path + "bu"
companies_map_path = global_data_path + "companies_map/companies_map.json"
dict_path = global_data_path + "dict/dict_20241030.pkl"
general_nmd_path = global_data_path + "companies_map/general_nmd.json"
consultations_dataset_path = global_data_path + "consult_data"
explanations_dataset_path = global_data_path + "explanations"
explanations_for_llm_path = global_data_path + "explanations_for_llm/explanations_for_llm.json"
rules_list_path = global_data_path + "rules_list/terms.txt"
db_data_types = ['НКРФ', 'ГКРФ', 'ТКРФ', 'Федеральный закон', 'Письмо Минфина', 'Письмо ФНС',
'Приказ ФНС', 'Постановление Правительства', 'Судебный документ', 'ВНД', 'Бухгалтерский документ']
device = os.environ.get("MODEL_DEVICE", 'cuda' if torch.cuda.is_available() else 'cpu')
# access token huggingface. Если задан, то используется модель с HF
hf_token = os.environ.get("HF_TOKEN", "")
hf_model_name = os.environ.get("HF_MODEL_NAME", "")
llm_api_endpoint = os.environ.get("LLM_API_ENDPOINT", "")
headers = {'Content-Type': 'application/json'}
def_k = 15
class SemanticSearch:
def __init__(self, do_normalization: bool = True):
self.device = device
self.do_normalization = do_normalization
self.load_model()
# Основная база
self.full_base_search = True
self.index_consult = IndexFlatIP(self.embedding_dim)
self.index_explanations = IndexFlatIP(self.embedding_dim)
self.index_all_docs_with_accounting = IndexFlatIP(self.embedding_dim)
self.index_internal_docs = IndexFlatIP(self.embedding_dim)
self.spec_index_internal_docs = IndexFlatIP(self.embedding_dim)
self.index_teaser = IndexFlatIP(self.embedding_dim)
self.load_data()
# Обработка встраиваний
def process_embeddings(docs):
embeddings = torch.cat([torch.unsqueeze(torch.Tensor(x['doc_embedding']), 0) for x in docs], dim=0)
if self.do_normalization:
embeddings = F.normalize(embeddings, dim=-1).numpy()
return embeddings
# База ВНД
self.internal_docs_embeddings = process_embeddings(self.internal_docs)
self.index_internal_docs.add(self.internal_docs_embeddings)
self.spec_internal_docs_embeddings = process_embeddings(self.spec_internal_docs)
self.spec_index_internal_docs.add(self.spec_internal_docs_embeddings)
self.all_docs_with_accounting_embeddings = process_embeddings(self.all_docs_with_accounting)
self.index_all_docs_with_accounting.add(self.all_docs_with_accounting_embeddings)
# База консультаций
self.consult_embeddings = process_embeddings(self.all_consultations)
self.index_consult.add(self.consult_embeddings)
# База разъяснений
self.explanations_embeddings = process_embeddings(self.all_explanations)
self.index_explanations.add(self.explanations_embeddings)
@staticmethod
def get_main_info_with_llm(prompt: str):
response = requests.post(
url=llm_api_endpoint,
json={'prompt': ' [INST] ' + prompt + ' [/INST]',
'temperature': 0.0,
'n_predict': 2500.0,
'top_p': 0.95,
'min_p': 0.05,
'repeat_penalty': 1.2,
'stop': []})
answer = response.json()['content']
return answer
@staticmethod
def rerank_by_avg_score(refs, scores_to_take=3):
docs = {}
regex = r'_(\d{1,3})$'
refs = [(re.sub(regex, '', ref[0]), ref[1], float(ref[2])) for ref in refs]
for ref in refs:
if ref[0] not in docs.keys():
docs[ref[0]] = {'contents': [ref[1]], 'scores': [ref[2]]}
elif len(docs[ref[0]]['scores']) < scores_to_take:
docs[ref[0]]['contents'].append(ref[1])
docs[ref[0]]['scores'].append(ref[2])
for ref in docs:
docs[ref]['avg_score'] = np.mean(docs[ref]['scores'])
sorted_docs = sorted(docs.items(), key=lambda x: x[1]['avg_score'], reverse=True)
result_refs = [ref[0] for ref in sorted_docs]
return result_refs
async def olymp_think(self, query, sources, llm_params: LlmParams = None):
sources_text = ''
res = ''
for i, source in enumerate(sources):
sources_text += f'Источник [{i + 1}]: {sources[source]}\n'
# Если llm_params не переданы, значит используем микстраль по старому алгоритму
# TODO: Сделать api для микстрали (надо ли?)
if llm_params is None:
step = LLM_PROMPT_OLYMPIC.format(query=query, sources=sources_text)
res = self.get_main_info_with_llm(step)
else:
llm_api = LlmApi(llm_params)
query_for_trim = LLM_PROMPT_OLYMPIC.format(query=query, sources='')
trimmed_sources_result = await llm_api.trim_sources(sources_text, query_for_trim)
prompt = LLM_PROMPT_OLYMPIC.format(query=query, sources=trimmed_sources_result["result"])
res = await llm_api.predict(prompt)
return res
@staticmethod
def parse_step(text):
step4_start = text.find('(4)')
if step4_start != -1:
step4_start = 0
step5_start = text.find('(5)')
if step5_start == -1:
step5_start = 0
if step4_start + 3 < step5_start:
extracted_comment = text[step4_start + 3:step5_start]
else:
extracted_comment = ''
if '$$' in text:
extracted_comment = ''
extracted_content = re.findall(r'\[(.*?)\]', text[step5_start:])
extracted_numbers = []
for item in extracted_content:
if item.isdigit():
extracted_numbers.append(int(item))
return extracted_comment, extracted_numbers
@staticmethod
def lemmatize_query(text):
morph = pymorphy3.MorphAnalyzer()
signs = ',.<>?;\'\":}{!)(][-'
words = text.split()
lemmas = []
for word in words:
if not word.isupper():
word = morph.parse(word)[0].normal_form
lemmas.append(word)
for i, lemma in enumerate(lemmas):
while lemma[0] in signs and len(lemma) > 1:
lemma = lemma[1:]
lemmas[i] = lemma
while lemma[-1] in signs and len(lemma) > 1:
lemma = lemma[:-1]
lemmas[i] = lemma
return " ".join(lemmas)
@staticmethod
def mark_for_one_word_dict(lem_dict):
terms_first_word = set()
first_word_matching_names = {}
first_word_names_to_remove = {}
for name in lem_dict:
first_word = name.split()[0]
if first_word in terms_first_word:
lem_dict[name]['one_word_searchable'] = False
first_word_names_to_remove[first_word] = first_word_matching_names[first_word]
else:
terms_first_word.add(first_word)
first_word_matching_names[first_word] = name
for first_word in first_word_names_to_remove:
name = first_word_names_to_remove[first_word]
lem_dict[name]['one_word_searchable'] = False
return lem_dict
def lemmatize_dict(self, terms_dict):
lem_dict = {}
morph = pymorphy3.MorphAnalyzer()
for name in terms_dict:
if not name.isupper():
lem_name = morph.parse(name)[0].normal_form
else:
lem_name = name
lem_dict[lem_name] = {}
lem_dict[lem_name]['name'] = name
lem_dict[lem_name]['definitions'] = terms_dict[name]['definitions']
lem_dict[lem_name]['titles'] = terms_dict[name]['titles']
lem_dict[lem_name]['sources'] = terms_dict[name]['sources']
lem_dict[lem_name]['is_multi_def'] = terms_dict[name]['is_multi_def']
lem_dict[lem_name]['one_word_searchable'] = True
lem_dict = self.mark_for_one_word_dict(lem_dict)
return lem_dict
@staticmethod
def separate_one_word_searchable_dict(lem_dict):
lem_dict_fast = {}
lem_dict_slow = {}
for name in lem_dict:
if lem_dict[name]['one_word_searchable']:
lem_dict_fast[name] = {}
lem_dict_fast[name]['name'] = lem_dict[name]['name']
lem_dict_fast[name]['definitions'] = lem_dict[name]['definitions']
lem_dict_fast[name]['titles'] = lem_dict[name]['titles']
lem_dict_fast[name]['sources'] = lem_dict[name]['sources']
lem_dict_fast[name]['is_multi_def'] = lem_dict[name]['is_multi_def']
else:
lem_dict_slow[name] = {}
lem_dict_slow[name]['name'] = lem_dict[name]['name']
lem_dict_slow[name]['definitions'] = lem_dict[name]['definitions']
lem_dict_slow[name]['titles'] = lem_dict[name]['titles']
lem_dict_slow[name]['sources'] = lem_dict[name]['sources']
lem_dict_slow[name]['is_multi_def'] = lem_dict[name]['is_multi_def']
return lem_dict_fast, lem_dict_slow
@staticmethod
def extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase):
words = original_text.split()
words_lem = lemmatized_text.split()
words_lem_phrase = lemmatized_phrase.split()
for i, word in enumerate(words_lem):
if word == words_lem_phrase[0]:
words_full = ' '.join(words_lem[i:i + len(words_lem_phrase)])
if words_full == lemmatized_phrase:
original_phrase = ' '.join(words[i:i + len(words_lem_phrase)])
return original_phrase
return False
def substitute_definitions(self, original_text, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=False):
lemmatized_text = self.lemmatize_query(original_text)
found_phrases = set()
phrases_to_add1 = []
phrases_to_add2 = []
words = lemmatized_text.split()
sorted_lem_dict = sorted(lem_dict_slow.items(), key=lambda x: len(x[0]),
reverse=True) # можно сэкономить милисекунды и вынести сортировку по длине куда-то наружу
for lemmatized_phrase_tuple in sorted_lem_dict:
lemmatized_phrase = lemmatized_phrase_tuple[0]
is_new_phrase = True
is_one_word = True
lem_phrase_words = lemmatized_phrase.split()
if len(lem_phrase_words) > 1:
is_one_word = False
if lemmatized_phrase in lemmatized_text and not is_one_word:
if lemmatized_phrase in found_phrases:
is_new_phrase = False
else:
found_phrases.add(lemmatized_phrase)
original_phrase = self.extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase)
phrases_to_add2.append((lemmatized_phrase, original_phrase))
if is_one_word and lemmatized_phrase in words:
for phrase in found_phrases:
if lemmatized_phrase in phrase:
is_new_phrase = False
if is_new_phrase:
found_phrases.add(lemmatized_phrase)
original_phrase = self.extract_original_phrase(original_text, lemmatized_text, lemmatized_phrase)
phrases_to_add2.append((lemmatized_phrase, original_phrase))
for word in words:
is_new_phrase = True
if word in lem_dict_fast:
for phrase in found_phrases:
if word in phrase:
is_new_phrase = False
break
if is_new_phrase:
found_phrases.add(word)
original_phrase = self.extract_original_phrase(original_text, lemmatized_text, word)
phrases_to_add1.append((word, original_phrase))
phrases_to_add = phrases_to_add1 + phrases_to_add2
definition_num = 0
definitions_info = []
substituted_text = original_text
try:
if for_llm:
for term, original_phrase in phrases_to_add:
if lem_dict[term]['is_multi_def']:
definition_num = 0 # Здесь может быть логика контекстно-зависимого выбора нужного определения
term_start = original_text.find(original_phrase)
if type(lem_dict[term]['definitions']) is list:
definitions_info.append(f"{term}-{lem_dict[term]['definitions'][definition_num]}")
else:
definitions_info.append(f"{term}-{lem_dict[term]['definitions']}")
if definitions_info:
definitions_str = ", ".join(definitions_info)
substituted_text = f"{original_text}. Дополнительная информация: {definitions_str}"
else:
substituted_text = original_text
else:
for term, original_phrase in phrases_to_add:
if lem_dict[term]['is_multi_def']:
# Здесь может быть логика контекстно-зависимого выбора нужного определения
definition_num = 0
term_start = substituted_text.find(original_phrase)
if type(lem_dict[term]['definitions']) is list:
substituted_text = substituted_text[:term_start + len(
original_phrase)] + f" ({lem_dict[term]['definitions'][definition_num]})" + substituted_text[
term_start + len(
original_phrase):]
else:
substituted_text = substituted_text[:term_start + len(
original_phrase)] + f" ({lem_dict[term]['definitions']})" + substituted_text[
term_start + len(
original_phrase):]
except Exception as e:
print(f'error processing\n {original_text}\n {term}: {e}')
return substituted_text, phrases_to_add
def filter_by_types(self,
pred: list[str] = None,
scores: list[float] = None,
indexes: list[int] = None,
docs_embeddings: list = None,
ctgs: dict = None):
ctgs = [ctg for ctg in ctgs.keys() if ctgs[ctg]]
filtred_pred, filtred_scores, filtred_indexes, filtred_docs_embeddings = [], [], [], []
for doc_name, score, index, doc_embedding in zip(pred, scores, indexes, docs_embeddings):
if ('ВНД' in doc_name and 'ВНД' in ctgs) or self.all_docs_with_accounting[index]['doc_type'] in ctgs:
filtred_pred.append(doc_name)
filtred_scores.append(score)
filtred_indexes.append(index)
filtred_docs_embeddings.append(doc_embedding)
return filtred_pred, filtred_scores, filtred_indexes, filtred_docs_embeddings
def get_types_of_docs(self, all_docs):
def type_determiner(doc_name):
names = ['НКРФ', 'ГКРФ', 'ТКРФ', 'Федеральный закон', 'Письмо Минфина', 'Письмо ФНС', 'Приказ ФНС',
'Постановление Правительства', 'Судебный документ', 'ВНД', 'Бухгалтерский документ']
for ctg in list(names):
if ctg in doc_name:
return ctg
for doc in all_docs:
doc_type = type_determiner(doc['doc_name'])
doc['doc_type'] = doc_type
return all_docs
def load_model(self):
if hf_token and hf_model_name:
self.tokenizer = AutoTokenizer.from_pretrained(hf_model_name, use_auth_token=True)
self.model = AutoModel.from_pretrained(hf_model_name, use_auth_token=True).to(self.device)
else:
self.tokenizer = AutoTokenizer.from_pretrained(global_model_path)
self.model = AutoModel.from_pretrained(global_model_path).to(self.device)
self.max_len = self.tokenizer.max_len_single_sentence
self.embedding_dim = self.model.config.hidden_size
def load_data(self):
with open(dict_path, "rb") as f:
self.terms_dict = pickle.load(f)
with open(companies_map_path, "r", encoding='utf-8') as f:
self.companies_map = json.load(f)
with open(general_nmd_path, "r", encoding='utf-8') as f:
self.general_nmd = json.load(f)
with open(explanations_for_llm_path, "r", encoding='utf-8') as f:
self.explanations_for_llm = json.load(f)
with open(rules_list_path, 'r', encoding='utf-8') as f:
self.rules_list = f.read().splitlines()
self.all_docs_info = dataset.load_from_disk(data_path_consult).to_list() # ONLY EXTERNAL DOCS
self.internal_docs = dataset.load_from_disk(internal_docs_data_path).to_list()
self.accounting_docs = dataset.load_from_disk(accounting_data_path).to_list()
self.spec_internal_docs = dataset.load_from_disk(spec_internal_docs_data_path).to_list()
self.all_docs_with_accounting = self.all_docs_info + self.accounting_docs
self.all_docs_with_accounting = self.get_types_of_docs(self.all_docs_with_accounting)
self.type_weights_nu = {'НКРФ': 1,
'ТКРФ': 1,
'ГКРФ': 1,
'Письмо Минфина': 0.9,
'Письмо ФНС': 0.6,
'Приказ ФНС': 1,
'Постановление Правительства': 1,
'Федеральный закон': 0.9,
'Судебный документ': 0.2,
'ВНД': 0.2,
'Бухгалтерский документ': 0.7,
'Закон Красноярского края': 1.2,
'Правила заполнения': 1.2,
'Правила ведения': 1.2}
self.all_consultations = dataset.load_from_disk(consultations_dataset_path).to_list()
self.all_explanations = dataset.load_from_disk(explanations_dataset_path).to_list()
@staticmethod
def remove_duplicate_paragraphs(paragraphs):
unique_paragraphs = []
seen = set()
for paragraph in paragraphs:
stripped_paragraph = paragraph.strip()
if stripped_paragraph and stripped_paragraph not in seen:
unique_paragraphs.append(paragraph)
seen.add(stripped_paragraph)
return '\n'.join(unique_paragraphs)
@staticmethod
def construct_base(idx_list, base):
concatenated_text = ""
seen_ids = set()
pattern = re.compile(r'_(\d{1,3})')
def find_overlap(a: str, b: str) -> int:
max_overlap = min(len(a), len(b))
for i in range(max_overlap, 0, -1):
if a[-i:] == b[:i]:
return i
return 0
def add_ellipsis(text: str) -> str:
if not text:
return text
segments = text.split('\n\n')
processed_segments = []
for segment in segments:
if segment and not (
segment[0].isupper() or segment[0].isdigit() or segment[0] in ['•', '-', '—', '.']):
segment = '...' + segment
if segment and not (segment.endswith('.') or segment.endswith(';')):
segment += '...'
processed_segments.append(segment)
return '\n\n'.join(processed_segments)
for current_index in idx_list:
if current_index in seen_ids:
continue
start_index = max(0, current_index - 2)
end_index = min(len(base), current_index + 3)
current_name_base = pattern.sub('', base[current_index]['doc_name'])
current_doc_text = base[current_index]['doc_text']
texts_to_concatenate = [current_doc_text]
for i in range(current_index - 1, start_index - 1, -1):
if i in seen_ids:
continue
surrounding_name_base = pattern.sub('', base[i]['doc_name'])
if current_name_base != surrounding_name_base:
break
surrounding_text = base[i]['doc_text']
overlap_length = find_overlap(surrounding_text, texts_to_concatenate[0])
if overlap_length == 0:
break
new_text = surrounding_text + texts_to_concatenate[0][overlap_length:]
texts_to_concatenate[0] = new_text
seen_ids.add(i)
for i in range(current_index + 1, end_index):
if i in seen_ids:
continue
surrounding_name_base = pattern.sub('', base[i]['doc_name'])
if current_name_base != surrounding_name_base:
break
surrounding_text = base[i]['doc_text']
overlap_length = find_overlap(texts_to_concatenate[-1], surrounding_text)
if overlap_length == 0:
break
new_text = texts_to_concatenate[-1] + surrounding_text[overlap_length:]
texts_to_concatenate[-1] = new_text
seen_ids.add(i)
combined_text = ' '.join(texts_to_concatenate)
concatenated_text += combined_text + '\n\n'
seen_ids.add(current_index)
concatenated_text = add_ellipsis(concatenated_text)
return concatenated_text.rstrip('\n')
def search_results_multiply_weights(self,
pred: list[str] = None,
scores: list[float] = None,
indexes: list[int] = None,
docs_embeddings: list = None) -> tuple[list[str], list[float], list[int], list]:
if pred is None or scores is None or indexes is None or docs_embeddings is None:
return [], [], [], []
weights = self.type_weights_nu
weighted_scores = [(weights.get(ctg, 0) * score, prediction, idx, emb)
for prediction, score, idx, emb in zip(pred, scores, indexes, docs_embeddings)
for ctg in weights if ctg in prediction]
weighted_scores.sort(reverse=True, key=lambda x: x[0])
if weighted_scores:
sorted_scores, sorted_preds, sorted_indexes, sorted_docs_embeddings = zip(*weighted_scores)
else:
sorted_scores, sorted_preds, sorted_indexes, sorted_docs_embeddings = [], [], [], []
return list(sorted_preds), list(sorted_scores), list(sorted_indexes), list(sorted_docs_embeddings)
def get_uniq_relevant_docs(self,
top_k: int,
query_refs_all: list[str],
scores: list[float],
indexes: list[int],
docs_embeddings: list[list[float]]
) -> tuple[dict[str, list[str]], dict[str, list[float]], dict[str, list[int]], dict[str, list[list[float]]]]:
regex = r'_\d{1,3}'
base_ref_dict = {}
for i, ref in enumerate(query_refs_all):
base_ref = re.sub(regex, '', ref)
base_ref = base_ref.strip()
if base_ref not in base_ref_dict:
if len(base_ref_dict) >= top_k:
continue
base_ref_dict[base_ref] = {
'refs': [],
'scores': [],
'indexes': [],
'embeddings': []
}
base_ref_dict[base_ref]['refs'].append(ref)
base_ref_dict[base_ref]['scores'].append(scores[i])
base_ref_dict[base_ref]['indexes'].append(indexes[i])
base_ref_dict[base_ref]['embeddings'].append(docs_embeddings[i])
def get_suffix_number(ref: str):
match = re.findall(regex, ref)
if match:
match = re.findall(regex, ref)[0].replace('_', '')
return int(match)
return None
for base_ref, data in base_ref_dict.items():
refs = data['refs']
scores_list = data['scores']
indexes_list = data['indexes']
embeddings_list = data['embeddings']
combined = list(zip(refs, scores_list, indexes_list, embeddings_list))
def sort_key(item):
ref = item[0]
suffix = get_suffix_number(ref)
return (0 if suffix is None else 1, suffix if suffix is not None else -1)
combined_sorted = sorted(combined, key=sort_key)
sorted_refs, sorted_scores, sorted_indexes, sorted_embeddings = zip(*combined_sorted)
base_ref_dict[base_ref]['refs'] = list(sorted_refs)[:20]
base_ref_dict[base_ref]['scores'] = list(sorted_scores)[:20]
base_ref_dict[base_ref]['indexes'] = list(sorted_indexes)[:20]
base_ref_dict[base_ref]['embeddings'] = list(sorted_embeddings)[:20]
unique_refs = {k: v['refs'] for k, v in base_ref_dict.items()}
filtered_scores = {k: v['scores'] for k, v in base_ref_dict.items()}
filtered_indexes = {k: v['indexes'] for k, v in base_ref_dict.items()}
filtered_docs_embeddings = {k: v['embeddings'] for k, v in base_ref_dict.items()}
return unique_refs, filtered_scores, filtered_indexes, filtered_docs_embeddings
def filter_results(self, pred_internal, scores_internal, indices_internal, docs_embeddings_internal, companies_files):
filt_pred_internal, filt_scores_internal, \
filt_indices_internal, filt_docs_embeddings_internal = list(), list(), list(), list()
def add_data(pred, ind, score, emb):
filt_pred_internal.append(pred)
filt_indices_internal.append(ind)
filt_scores_internal.append(score)
filt_docs_embeddings_internal.append(emb)
for pred, score, ind, emb in zip(pred_internal, scores_internal, indices_internal, docs_embeddings_internal):
if [doc for doc in self.general_nmd if doc in pred]:
add_data(pred, ind, score, emb)
continue
for company in companies_files:
if company in pred:
add_data(pred, ind, score, emb)
return filt_pred_internal, filt_scores_internal, filt_indices_internal, filt_docs_embeddings_internal
@staticmethod
def merge_dictionaries(dicts: list = None):
merged_dict = {}
max_length = max(len(d) for d in dicts)
for i in range(max_length):
for d in dicts:
keys = list(d.keys())
values = list(d.values())
if i < len(keys):
merged_dict[keys[i]] = values[i]
return merged_dict
@staticmethod
def check_specific_key(dictionary, key):
if key in dictionary and dictionary[key] is True:
for k, v in dictionary.items():
if k != key and v is True:
return False
return True
return False
@staticmethod
def remove_duplicates(input_list):
unique_dict = {}
for item in input_list:
unique_dict[item] = None
return list(unique_dict.keys())
async def search_engine(self,
query: str = None,
use_qe: bool = False,
categories: dict = None,
llm_params: LlmParams = None):
if True in list(categories.values()) and not all(categories.values()):
self.full_base_search = False
if self.check_specific_key(categories, 'ВНД'):
nmd_chunks = 120
nmd_refs = 45
extra_chunks = 1
extra_refs = 1
elif not categories['ВНД']:
extra_chunks = 120
extra_refs = 45
nmd_chunks = 1
nmd_refs = 1
else:
nmd_chunks = 60
nmd_refs = 23
extra_chunks = 60
extra_refs = 23
else:
self.full_base_search = True
nmd_chunks = 50
nmd_refs = 15
extra_chunks = 75
extra_refs = 30
# Ответы от ллм для отправки на фронт
llm_responses = []
# Токенизация и векторизация запроса
query_tokens = query_tokenization(query, self.tokenizer)
query_embeds = query_embed_extraction(query_tokens, self.model, self.do_normalization)
# Поиск по базе документов внешней
distances, indices = self.index_all_docs_with_accounting.search(query_embeds, len(self.all_docs_with_accounting))
pred = [self.all_docs_with_accounting[x]['doc_name'] for x in indices[0]]
docs_embeddings = [self.all_docs_with_accounting[x]['doc_embedding'] for x in indices[0]]
preds, scores, indexes, docs_embeddings = pred[:5000], list(distances[0])[:5000], \
list(indices[0])[:5000], docs_embeddings[:5000]
if not re.search('[Кк]расноярск', query):
self.type_weights_nu['Закон Красноярского края'] = 0
else:
self.type_weights_nu['Закон Красноярского края'] = 1.2
if not use_rules(query, self.rules_list):
self.type_weights_nu['Правила ведения'] = 0
self.type_weights_nu['Правила заполнения'] = 0
else:
self.type_weights_nu['Правила ведения'] = 1.2
self.type_weights_nu['Правила заполнения'] = 1.2
preds, scores, indexes, docs_embeddings = pred[:5000], list(distances[0])[:5000], \
list(indices[0])[:5000], docs_embeddings[:5000]
# Поиск по базе документов внутренних
if self.full_base_search or categories['ВНД']:
distances_internal, indices_internal = self.index_internal_docs.search(query_embeds, len(self.spec_internal_docs))
pred_internal = [self.spec_internal_docs[x]['doc_name'] for x in indices_internal[0]]
docs_embeddings_internal = [self.spec_internal_docs[x]['doc_embedding'] for x in indices_internal[0]]
indices_internal = indices_internal[0]
scores_internal = []
for title, score in zip(pred_internal, distances_internal[0]):
if 'КУП' in title:
scores_internal.append(score*1.2)
else:
scores_internal.append(score)
companies_files = search_company.find_nmd_docs(query, self.companies_map)
pred_internal, scores_internal, indices_internal, docs_embeddings_internal = self.filter_results(pred_internal,
scores_internal,
indices_internal,
docs_embeddings_internal,
companies_files)
combined = list(zip(pred_internal, scores_internal, indices_internal, docs_embeddings_internal))
sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
top_nmd = sorted_combined[:nmd_chunks]
if 'ЕГДС' in query:
if not [x for x in top_nmd if 'п.5. Положение о КУП_262 (ВНД)' in x]:
ch262 = self.internal_docs[22976]
ch262 = (ch262['doc_name'], 1.0, 22976, ch262['chunks_embeddings'][0])
top_nmd.insert(0, ch262)
if not [x for x in top_nmd if 'п.5. Положение о КУП_130 (ВНД)' in x]:
ch130 = self.internal_docs[22844]
ch130 = (ch130['doc_name'], 1.0, 22844, ch130['chunks_embeddings'][0])
top_nmd.insert(1, ch130)
top_nmd = top_nmd[:nmd_chunks]
preds_internal, scores_internal, indexes_internal, internal_docs_embeddings = zip(*top_nmd)
preds_internal, scores_internal, indexes_internal, internal_docs_embeddings = list(preds_internal), \
list(scores_internal), \
list(indexes_internal), \
list(internal_docs_embeddings)
# Сбор уникальных внутренних документов
unique_preds_internal, unique_scores_internal, unique_indexes_internal, \
unique_docs_embeddings_internal = self.get_uniq_relevant_docs(
top_k=nmd_refs,
query_refs_all=preds_internal,
scores=scores_internal,
indexes=indexes_internal,
docs_embeddings=internal_docs_embeddings)
preds_internal, scores_internal, \
indexes_internal, internal_docs_embeddings = unique_preds_internal, unique_scores_internal,\
unique_indexes_internal, unique_docs_embeddings_internal
# Фильтрация или не фильтрация по категориям по наличию отметок в чек-боксах
if not self.full_base_search:
preds, scores, indexes, docs_embeddings = self.filter_by_types(preds, scores, indexes,
docs_embeddings, categories)
# Использование весов поверх скоров
sorted_preds, sorted_scores, sorted_indexes, sorted_docs_embeddings = self.search_results_multiply_weights(
pred=preds,
scores=scores,
indexes=indexes,
docs_embeddings=docs_embeddings)
sorted_preds, sorted_scores, sorted_indexes, sorted_docs_embeddings = sorted_preds[:extra_chunks], \
sorted_scores[:extra_chunks], \
sorted_indexes[:extra_chunks], \
sorted_docs_embeddings[:extra_chunks]
# Сбор уникальных документов внешних
unique_preds, unique_scores, unique_indexes, unique_docs_embeddings = self.get_uniq_relevant_docs(
top_k=extra_refs,
query_refs_all=sorted_preds,
scores=sorted_scores,
indexes=sorted_indexes,
docs_embeddings=sorted_docs_embeddings
)
preds, scores, indexes, docs_embeddings = unique_preds, unique_scores, unique_indexes, unique_docs_embeddings
if use_qe:
try:
prompt = LLM_PROMPT_KEYS.format(query=query)
if llm_params is None:
keyword_query = self.get_main_info_with_llm(prompt)
else:
llm_api = LlmApi(llm_params)
keyword_query = await llm_api.predict(prompt)
llm_responses.append(keyword_query)
keyword_query = re.sub(r'\[1\].*?(?=\[\d+\]|$)', '', keyword_query, flags=re.DOTALL).replace(' [2]', '').replace('[3]', '').strip()
keyword_query_tokens = query_tokenization(keyword_query, self.tokenizer)
keyword_query_embeds = query_embed_extraction(keyword_query_tokens,
self.model,
self.do_normalization)
keyword_distances, keyword_indices = self.index_all_docs_with_accounting.search(
keyword_query_embeds, len(self.all_docs_with_accounting))
keyword_pred = [self.all_docs_with_accounting[x]['doc_name'] for x in keyword_indices[0]]
keyword_docs_embeddings = [self.all_docs_with_accounting[x]['doc_embedding'] for x in
keyword_indices[0]]
if not self.full_base_search:
keyword_preds, keyword_scores, \
keyword_indexes, keyword_docs_embeddings = self.filter_by_types(keyword_pred,
keyword_distances[0],
keyword_indices[0],
keyword_docs_embeddings,
categories)
else:
keyword_preds, keyword_scores, \
keyword_indexes, keyword_docs_embeddings = keyword_pred, keyword_distances[0], \
keyword_indices[0],keyword_docs_embeddings
keyword_preds, keyword_scores, \
keyword_indexes, keyword_docs_embeddings = self.search_results_multiply_weights(
pred=keyword_preds, scores=keyword_scores,
indexes=keyword_indexes, docs_embeddings=keyword_docs_embeddings)
keyword_unique_preds, keyword_unique_scores, \
keyword_unique_indexes, keyword_unique_docs_embeddings = self.get_uniq_relevant_docs(
top_k=45,
query_refs_all=keyword_preds,
scores=keyword_scores,
indexes=keyword_indexes,
docs_embeddings=keyword_docs_embeddings)
preds = dict(list(self.merge_dictionaries([preds, keyword_unique_preds]).items())[:30])
scores = dict(list(self.merge_dictionaries([scores, keyword_unique_scores]).items())[:30])
indexes = dict(list(self.merge_dictionaries([indexes, keyword_unique_indexes]).items())[:30])
except:
traceback.print_exc()
print(f"Error applying keys (possibly the LLM is not available)")
if self.full_base_search or categories['ВНД']:
# Внесение внутренних топ-10 документов в выдачу
if self.full_base_search or categories['ВНД']:
preds = self.merge_dictionaries([preds, preds_internal])
scores = self.merge_dictionaries([scores, scores_internal])
indexes = self.merge_dictionaries([indexes, indexes_internal])
# Красивая сборка чанков для LLM
texts_for_llm, docs, teasers = [], [], []
for key, idx_list in indexes.items():
collected_text = []
if 'ВНД' in key:
base = self.internal_docs
else:
base = self.all_docs_with_accounting
if re.search('Минфин|Бухгалтерский документ|ФНС|Судебный документ|Постановление Правительства|Федеральный закон', key):
text = self.construct_base(idx_list, base)
collected_text.append(text)
else:
for idx in idx_list:
if idx < len(base):
for text in base[idx]['doc_text'].split('\n'):
collected_text.append(text)
collected_text = self.remove_duplicate_paragraphs(collected_text)
texts_for_llm.append(collected_text)
# Поиск релевантных консультаций
distances_consult, indices_consult = self.index_consult.search(query_embeds, len(self.all_consultations))
predicted_consultations = {self.all_consultations[x]['doc_name']: self.all_consultations[x]['doc_text']
for x in indices_consult[0]}
# Поиск релевантных разъяснений
distances_explanations, indices_explanations = self.index_explanations.search(query_embeds, len(self.all_explanations))
predicted_explanations = {self.all_explanations[x]['doc_name']: self.all_explanations[x]['doc_text']
for x in indices_explanations[0]}
results = list(zip(list(predicted_explanations.keys()),
list(predicted_explanations.values()),
distances_explanations[0]))
explanation_titles = self.rerank_by_avg_score(results)[:3]
try:
predicted_explanation = {explanation_title: self.explanations_for_llm[explanation_title] for explanation_title in explanation_titles}
except:
predicted_explanation = {}
print('The relevant document was not found in the system.')
return query, [x.replace('ФЕДЕРАЛЬНЫЙ СТАНДАРТ БУХГАЛТЕРСКОГО УЧЕТА', 'Федеральный стандарт бухгалтерского учета ФСБУ') for x in list(preds.keys())], texts_for_llm, dict(list(predicted_consultations.items())[:def_k]), \
predicted_explanation, llm_responses
async def olympic_branch(self,
query: str = None,
sources: dict = None,
categories: dict = None,
llm_params: LlmParams = None):
# Собираем все ответы ллм для отправки на фронт
llm_responses = []
text = await self.olymp_think(query, sources, llm_params)
llm_responses.append(text)
saved_sources = {}
saved_step_by_step = []
comment1, sources_choice = self.parse_step(text)
sources_choice = [source - 1 for source in sources_choice]
for idx, ref in enumerate(sources):
if idx in sources_choice and ref not in saved_sources.keys():
saved_sources.update({ref: sources[ref]})
should_continue = True
if comment1 == '':
count = 4
count = 0
while count < 4:
query, preds, \
texts_for_llm, predicted_consultations, \
predicted_explanation, skip_llm_responses = await self.search_engine(query, use_qe=False, categories=categories)
sources = dict(map(lambda i,j: (i,j), preds, texts_for_llm))
sources = dict(islice(sources.items(), 20))
text = await self.olymp_think(query, sources, llm_params)
llm_responses.append(text)
comment2, sources_choice = self.parse_step(text)
sources_choice = [source - 1 for source in sources_choice]
saved_step_by_step.append(sources_choice)
for idx, ref in enumerate(sources):
if idx in sources_choice and ref not in saved_sources.keys():
saved_sources.update({ref: sources[ref]})
if comment2 == '':
break
comment1 = comment2
count += 1
return saved_sources, saved_step_by_step, llm_responses
async def search(self,
query: str = None,
use_qe: bool = False,
use_olympic: bool = False,
categories: dict = None,
llm_params: LlmParams = None):
# Преобразование запроса
lem_dict = self.lemmatize_dict(self.terms_dict)
lem_dict_fast, lem_dict_slow = self.separate_one_word_searchable_dict(lem_dict)
query_for_llm, _ = self.substitute_definitions(query, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=True)
query, _ = self.substitute_definitions(query, lem_dict, lem_dict_fast, lem_dict_slow, for_llm=False)
# Базовый поиск
query, base_preds, base_texts_for_llm, \
predicted_consultations, predicted_explanation, llm_responses = await self.search_engine(query, use_qe, categories, llm_params)
if use_olympic:
sources = dict(map(lambda i,j: (i,j), base_preds, base_texts_for_llm))
sources = dict(islice(sources.items(), 20))
olymp_results, olymp_step_by_step, llm_responses = await self.olympic_branch(query, sources, categories, llm_params)
olymp_preds, olymp_texts_for_llm = list(olymp_results.keys()), list(olymp_results.values())
if len(olymp_preds) <= 45:
preds = olymp_preds + base_preds
preds = self.remove_duplicates(preds)[:45]
texts_for_llm = olymp_texts_for_llm + base_texts_for_llm
texts_for_llm = self.remove_duplicates(texts_for_llm)[:45]
return query_for_llm, preds, texts_for_llm, predicted_consultations, predicted_explanation, llm_responses
else:
olymp_results = self.merge_dictionaries(olymp_step_by_step)[:45]
preds, texts_for_llm = list(olymp_results.keys()), list(olymp_results.values())
return query_for_llm, preds, texts_for_llm, predicted_consultations, predicted_explanation, llm_responses
else:
return query_for_llm, base_preds, base_texts_for_llm, predicted_consultations, predicted_explanation, llm_responses
|