nn-search-full / llm /deepinfra_api.py
muryshev's picture
update
7f1b9db
raw
history blame
6.58 kB
import json
from typing import Optional, List
import httpx
from llm.common import LlmParams, LlmApi
class DeepInfraApi(LlmApi):
"""
Класс для работы с API vllm.
"""
def __init__(self, params: LlmParams):
super().__init__()
super().set_params(params)
async def get_models(self) -> List[str]:
"""
Выполняет GET-запрос к API для получения списка доступных моделей.
Возвращает:
list[str]: Список идентификаторов моделей.
Если произошла ошибка или данные недоступны, возвращается пустой список.
Исключения:
Все ошибки HTTP-запросов логируются в консоль, но не выбрасываются дальше.
"""
try:
async with httpx.AsyncClient() as client:
response = await client.get(f"{self.params.url}/v1/openai/models", headers=super().create_headers())
if response.status_code == 200:
json_data = response.json()
return [item['id'] for item in json_data.get('data', [])]
except httpx.RequestError as error:
print('Error fetching models:', error)
return []
def create_messages(self, prompt: str) -> List[dict]:
"""
Создает сообщения для LLM на основе переданного промпта и системного промпта (если он задан).
Args:
prompt (str): Пользовательский промпт.
Returns:
list[dict]: Список сообщений с ролями и содержимым.
"""
actual_prompt = self.apply_llm_template_to_prompt(prompt)
messages = []
if self.params.predict_params and self.params.predict_params.system_prompt:
messages.append({"role": "system", "content": self.params.predict_params.system_prompt})
messages.append({"role": "user", "content": actual_prompt})
return messages
def apply_llm_template_to_prompt(self, prompt: str) -> str:
"""
Применяет шаблон LLM к переданному промпту, если он задан.
Args:
prompt (str): Пользовательский промпт.
Returns:
str: Промпт с примененным шаблоном (или оригинальный, если шаблон отсутствует).
"""
actual_prompt = prompt
if self.params.template is not None:
actual_prompt = self.params.template.replace("{{PROMPT}}", actual_prompt)
return actual_prompt
async def tokenize(self, prompt: str) -> Optional[dict]:
raise NotImplementedError("This function is not supported.")
async def detokenize(self, tokens: List[int]) -> Optional[str]:
raise NotImplementedError("This function is not supported.")
async def create_request(self, prompt: str) -> dict:
"""
Создает запрос для предсказания на основе параметров LLM.
Args:
prompt (str): Промпт для запроса.
Returns:
dict: Словарь с параметрами для выполнения запроса.
"""
request = {
"stream": False,
"model": self.params.model,
}
predict_params = self.params.predict_params
if predict_params:
if predict_params.stop:
non_empty_stop = list(filter(lambda o: o != "", predict_params.stop))
if non_empty_stop:
request["stop"] = non_empty_stop
if predict_params.n_predict is not None:
request["max_tokens"] = int(predict_params.n_predict or 0)
request["temperature"] = float(predict_params.temperature or 0)
if predict_params.top_k is not None:
request["top_k"] = int(predict_params.top_k)
if predict_params.top_p is not None:
request["top_p"] = float(predict_params.top_p)
if predict_params.min_p is not None:
request["min_p"] = float(predict_params.min_p)
if predict_params.seed is not None:
request["seed"] = int(predict_params.seed)
if predict_params.n_keep is not None:
request["n_keep"] = int(predict_params.n_keep)
if predict_params.cache_prompt is not None:
request["cache_prompt"] = bool(predict_params.cache_prompt)
if predict_params.repeat_penalty is not None:
request["repetition_penalty"] = float(predict_params.repeat_penalty)
if predict_params.repeat_last_n is not None:
request["repeat_last_n"] = int(predict_params.repeat_last_n)
if predict_params.presence_penalty is not None:
request["presence_penalty"] = float(predict_params.presence_penalty)
if predict_params.frequency_penalty is not None:
request["frequency_penalty"] = float(predict_params.frequency_penalty)
request["messages"] = self.create_messages(prompt)
return request
async def trim_sources(self, sources: str, user_request: str, system_prompt: str = None) -> dict:
raise NotImplementedError("This function is not supported.")
async def predict(self, prompt: str) -> str:
"""
Выполняет запрос к API и возвращает результат.
Args:
prompt (str): Входной текст для предсказания.
Returns:
str: Сгенерированный текст.
"""
async with httpx.AsyncClient() as client:
request = await self.create_request(prompt)
response = await client.post(f"{self.params.url}/v1/openai/chat/completions", headers=super().create_headers(), json=request)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]