Spaces:
Sleeping
Sleeping
update
Browse files
business_transaction_map/components/faiss_vector_database.py
CHANGED
@@ -189,10 +189,6 @@ class FaissVectorDatabase:
|
|
189 |
"""
|
190 |
if len(emb_query.shape) != 2:
|
191 |
assert print('Не правильный размер вектора!')
|
192 |
-
|
193 |
-
print("Index dimension:", self.index.d) # Размерность индекса
|
194 |
-
print("Query dimension:", emb_query.shape[1]) # Размерность вектора запроса
|
195 |
-
|
196 |
|
197 |
distances, indexes = self.index.search(emb_query, k_neighbors)
|
198 |
answers = {}
|
|
|
189 |
"""
|
190 |
if len(emb_query.shape) != 2:
|
191 |
assert print('Не правильный размер вектора!')
|
|
|
|
|
|
|
|
|
192 |
|
193 |
distances, indexes = self.index.search(emb_query, k_neighbors)
|
194 |
answers = {}
|
fastapi_app.py
CHANGED
@@ -23,8 +23,6 @@ LLM_API_URL = os.getenv("LLM_API_URL", "")
|
|
23 |
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
|
24 |
LLM_USE_DEEPINFRA = os.getenv("LLM_USE_DEEPINFRA", "") == "1"
|
25 |
|
26 |
-
print(LLM_USE_DEEPINFRA)
|
27 |
-
|
28 |
class Query(BaseModel):
|
29 |
query: str = ''
|
30 |
top: int = 10
|
@@ -46,7 +44,7 @@ class Query(BaseModel):
|
|
46 |
'Бухгалтерский документ': False}
|
47 |
llm_params: LlmParams = None
|
48 |
|
49 |
-
|
50 |
transaction_maps_search = TransactionMapsSearch()
|
51 |
|
52 |
app = FastAPI(
|
@@ -78,7 +76,7 @@ def log_query_result(query, top, request_id, result):
|
|
78 |
@app.post('/search')
|
79 |
async def search_route(query: Query) -> dict:
|
80 |
|
81 |
-
default_llm_params = LlmParams(url=LLM_API_URL,api_key=LLM_API_KEY, model="
|
82 |
|
83 |
try:
|
84 |
question = getattr(query, "query", None)
|
@@ -97,7 +95,7 @@ async def search_route(query: Query) -> dict:
|
|
97 |
|
98 |
print(request_llm_params)
|
99 |
|
100 |
-
llm_params =
|
101 |
|
102 |
if LLM_USE_DEEPINFRA:
|
103 |
print(llm_params.model)
|
|
|
23 |
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
|
24 |
LLM_USE_DEEPINFRA = os.getenv("LLM_USE_DEEPINFRA", "") == "1"
|
25 |
|
|
|
|
|
26 |
class Query(BaseModel):
|
27 |
query: str = ''
|
28 |
top: int = 10
|
|
|
44 |
'Бухгалтерский документ': False}
|
45 |
llm_params: LlmParams = None
|
46 |
|
47 |
+
search = SemanticSearch()
|
48 |
transaction_maps_search = TransactionMapsSearch()
|
49 |
|
50 |
app = FastAPI(
|
|
|
76 |
@app.post('/search')
|
77 |
async def search_route(query: Query) -> dict:
|
78 |
|
79 |
+
default_llm_params = LlmParams(url=LLM_API_URL,api_key=LLM_API_KEY, model="meta-llama/Llama-3.3-70B-Instruct", predict_params=LlmPredictParams(temperature=0.15, top_p=0.95, min_p=0.05, seed=42, repetition_penalty=1.2, presence_penalty=1.1, max_tokens=6000))
|
80 |
|
81 |
try:
|
82 |
question = getattr(query, "query", None)
|
|
|
95 |
|
96 |
print(request_llm_params)
|
97 |
|
98 |
+
llm_params = getattr(query, "llm_params", default_llm_params)
|
99 |
|
100 |
if LLM_USE_DEEPINFRA:
|
101 |
print(llm_params.model)
|
huggingface/dataset_utils.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
def get_global_data_path():
|
5 |
+
"""
|
6 |
+
Загружает путь к папке `legal_info_search_data` внутри датасета Hugging Face.
|
7 |
+
|
8 |
+
Ожидает, что переменные окружения HF_TOKEN и HF_DATASET заданы.
|
9 |
+
Если переменные не указаны, возвращает значение по умолчанию.
|
10 |
+
|
11 |
+
Returns:
|
12 |
+
str: Путь к папке `legal_info_search_data`.
|
13 |
+
Raises:
|
14 |
+
ValueError: Если переменные окружения не указаны.
|
15 |
+
FileNotFoundError: Если папка `legal_info_search_data` не найдена.
|
16 |
+
"""
|
17 |
+
# Получение переменных окружения
|
18 |
+
hf_token = os.environ.get("HF_TOKEN")
|
19 |
+
hf_dataset = os.environ.get("HF_DATASET")
|
20 |
+
default_path = os.environ.get("GLOBAL_DATA_PATH")
|
21 |
+
|
22 |
+
# Проверяем, заданы ли переменные окружения
|
23 |
+
if not hf_token or not hf_dataset:
|
24 |
+
return default_path
|
25 |
+
|
26 |
+
# Загружаем датасет
|
27 |
+
try:
|
28 |
+
dataset = load_dataset(hf_dataset, use_auth_token=hf_token)
|
29 |
+
# Получаем путь к локальному кешу датасета
|
30 |
+
dataset_cache_path = dataset.cache_files[0]['filename']
|
31 |
+
global_data_path = os.path.join(os.path.dirname(dataset_cache_path), "legal_info_search_data")
|
32 |
+
|
33 |
+
# Проверяем существование папки
|
34 |
+
if not os.path.exists(global_data_path):
|
35 |
+
raise FileNotFoundError(f"Папка {global_data_path} не найдена в датасете {hf_dataset}.")
|
36 |
+
|
37 |
+
return global_data_path
|
38 |
+
except Exception as e:
|
39 |
+
raise RuntimeError(f"Ошибка при загрузке датасета: {str(e)}")
|
semantic_search.py
CHANGED
@@ -19,9 +19,18 @@ import torch.nn.functional as F
|
|
19 |
import pickle
|
20 |
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
|
21 |
from llm.vllm_api import LlmApi, LlmParams
|
|
|
22 |
|
23 |
global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")
|
26 |
|
27 |
data_path_consult = global_data_path + "external_data"
|
|
|
19 |
import pickle
|
20 |
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
|
21 |
from llm.vllm_api import LlmApi, LlmParams
|
22 |
+
from huggingface import dataset_utils
|
23 |
|
24 |
global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")
|
25 |
|
26 |
+
hf_token = os.environ.get("HF_TOKEN", None)
|
27 |
+
hf_dataset = os.environ.get("HF_DATASET", None)
|
28 |
+
|
29 |
+
if hf_token is not None and hf_dataset is not None:
|
30 |
+
global_data_path = dataset_utils.get_global_data_path()
|
31 |
+
print(f"Global data path: {global_data_path}")
|
32 |
+
|
33 |
+
|
34 |
global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")
|
35 |
|
36 |
data_path_consult = global_data_path + "external_data"
|