Spaces:
Runtime error
Runtime error
File size: 9,693 Bytes
377a7af 5efafc9 cb77897 5efafc9 3f29565 377a7af 98e80cb 377a7af 1eec172 effe919 29df98b 8b45905 377a7af ec87ae7 cb77897 5efafc9 3f29565 fd9191b 5efafc9 4e5d4c5 5efafc9 fd9191b 5efafc9 e651b99 3f29565 1d7f14c 3f29565 5efafc9 a769ced cb77897 a769ced 377a7af cb77897 377a7af cb77897 377a7af f5355b8 a0d9643 f5355b8 cb77897 f5355b8 377a7af cb77897 5a792ea cb77897 377a7af d203a32 a3a2261 32fc9c0 377a7af b44d34e 377a7af 95b3088 377a7af 95b3088 377a7af 95b3088 377a7af a3a2261 32fc9c0 377a7af a0d9643 377a7af e651b99 d619817 e651b99 d619817 e651b99 b698cda e651b99 377a7af d203a32 a3a2261 377a7af 95b3088 377a7af 95b3088 377a7af 95b3088 377a7af 5efafc9 377a7af 8b45905 377a7af 8b45905 377a7af 1fa5951 377a7af a0d9643 377a7af 8b45905 377a7af 5efafc9 e651b99 5efafc9 377a7af e651b99 5efafc9 377a7af 1ea19b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download, Repository
import huggingface_hub
import gc
import os.path
from datetime import datetime
import xml.etree.ElementTree as ET
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
CONTEXT_SIZE = 2000
ENABLE_GPU = True
GPU_LAYERS = 70
# Create a lock object
lock = threading.Lock()
app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG) # Set the desired logging level
# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf" # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"
#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"
repo_name = "IlyaGusev/saiga2_70b_gguf"
model_name = "ggml-model-q4_1.gguf"
#repo_name = "IlyaGusev/saiga2_7b_gguf"
#model_name = "model-q4_K.gguf"
local_dir = '.'
if os.path.isdir('/data'):
app.logger.info('Persistent storage enabled')
model = None
model_path = snapshot_download(repo_id=repo_name, allow_patterns=model_name) + '/' + model_name
app.logger.info('Model path: ' + model_path)
DATASET_REPO_URL = "https://huggingface.co/datasets/muryshev/saiga-chat"
DATA_FILENAME = "data-saiga-cuda-chat.xml"
DATA_FILE = os.path.join("dataset", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
app.logger.info("hfh: "+huggingface_hub.__version__)
repo = Repository(
local_dir="dataset", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def log(req: str = '', resp: str = ''):
if req or resp:
element = ET.Element("row", {"time": str(datetime.now()) })
req_element = ET.SubElement(element, "request")
req_element.text = req
resp_element = ET.SubElement(element, "response")
resp_element.text = resp
with open(DATA_FILE, "ab+") as xml_file:
xml_file.write(ET.tostring(element, encoding="utf-8"))
commit_url = repo.push_to_hub()
app.logger.info(commit_url)
def init_model(context_size, enable_gpu=False, gpu_layer_number=35):
global model
if model is not None:
del model
gc.collect()
if enable_gpu:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gpu_layers=gpu_layer_number,
n_gqa=8 #must be set for 70b models
)
return model
else:
model = Llama(
model_path=model_path,
n_ctx=context_size,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gqa=8 #must be set for 70b models
)
return model
init_model(CONTEXT_SIZE, ENABLE_GPU, GPU_LAYERS)
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
return get_message_tokens(model, **system_message)
def get_system_tokens_for_preprompt(model, preprompt):
system_message = {
"role": "system",
"content": preprompt
}
return get_message_tokens(model, **system_message)
#app.logger.info('Evaluating system tokens start')
#system_tokens = get_system_tokens(model)
#model.eval(system_tokens)
#app.logger.info('Evaluating system tokens end')
stop_generation = False
def generate_tokens(model, generator):
global stop_generation
app.logger.info('generate_tokens started')
with lock:
try:
for token in generator:
if token == model.token_eos() or stop_generation:
stop_generation = False
app.logger.info('End generating')
yield b'' # End of chunk
break
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
yield token_str
except Exception as e:
app.logger.info('generator exception')
app.logger.info(e)
yield b'' # End of chunk
@app.route('/change_context_size', methods=['GET'])
def handler_change_context_size():
global stop_generation, model
stop_generation = True
new_size = int(request.args.get('size', CONTEXT_SIZE))
init_model(new_size, ENABLE_GPU, GPU_LAYERS)
return Response('Size changed', content_type='text/plain')
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
global stop_generation
stop_generation = True
return Response('Stopped', content_type='text/plain')
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
app.logger.info('unknown method: '+request.method)
try:
request_payload = request.get_json()
app.logger.info('payload: '+request.get_json())
except Exception as e:
app.logger.info('payload empty')
return Response('What do you want?', content_type='text/plain')
@app.route('/search_request', methods=['POST'])
def generate_search_request():
global stop_generation
stop_generation = True
model.reset()
data = request.get_json()
app.logger.info(data)
user_query = data.get("query", "")
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
tokens = get_system_tokens_for_preprompt(model, preprompt)
tokens.append(LINEBREAK_TOKEN)
tokens = get_message_tokens(model=model, role="user", content=user_query[:200]) + [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
stop_generation = False
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
response_tokens = bytearray()
def generate_and_log_tokens(user_request, model, generator):
global response_tokens
for token in generate_tokens(model, generator):
if token == b'': # or (max_new_tokens is not None and i >= max_new_tokens):
log(user_request, response_tokens.decode("utf-8", errors="ignore"))
response_tokens = bytearray()
break
response_tokens.extend(token)
yield token
@app.route('/', methods=['POST'])
def generate_response():
global stop_generation
stop_generation = True
model.reset()
data = request.get_json()
app.logger.info(data)
messages = data.get("messages", [])
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
tokens = get_system_tokens(model)
tokens.append(LINEBREAK_TOKEN)
tokens = []
for message in messages:
if message.get("from") == "assistant":
message_tokens = get_message_tokens(model=model, role="bot", content=message.get("content", ""))
else:
message_tokens = get_message_tokens(model=model, role="user", content=message.get("content", ""))
tokens.extend(message_tokens)
tokens.extend([model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN])
app.logger.info('Prompt:')
user_request = model.detokenize(tokens[:CONTEXT_SIZE]).decode("utf-8", errors="ignore")
app.logger.info(user_request)
stop_generation = False
app.logger.info('Generate started')
generator = model.generate(
tokens[:CONTEXT_SIZE],
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
app.logger.info('Generator created')
# Use Response to stream tokens
return Response(generate_and_log_tokens(user_request, model, generator), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=False) |