Spaces:
Runtime error
Runtime error
musharafnasim
commited on
Colab notebook
Browse filesyou can use this in your own virtual enviroment
- Sentence_Generation.ipynb +152 -0
Sentence_Generation.ipynb
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 18,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "yqiXEj_uL8kv",
|
25 |
+
"outputId": "b3591701-bb63-4496-f90d-50d958b32b32"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
33 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
34 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
],
|
38 |
+
"source": [
|
39 |
+
"!pip install -q gradio\n",
|
40 |
+
"!pip install -q git+https://github.com/huggingface/transformers.git\n"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"source": [
|
46 |
+
"import gradio as gr\n",
|
47 |
+
"import tensorflow as tf\n",
|
48 |
+
"from transformers import TFGPT2LMHeadModel,GPT2Tokenizer"
|
49 |
+
],
|
50 |
+
"metadata": {
|
51 |
+
"id": "NWyCNUJIMp58"
|
52 |
+
},
|
53 |
+
"execution_count": 19,
|
54 |
+
"outputs": []
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"source": [
|
59 |
+
"tokenizer = GPT2Tokenizer.from_pretrained (\"gpt2\")\n",
|
60 |
+
"model = TFGPT2LMHeadModel.from_pretrained (\"gpt2\" ,pad_token_id=tokenizer.eos_token_id)"
|
61 |
+
],
|
62 |
+
"metadata": {
|
63 |
+
"colab": {
|
64 |
+
"base_uri": "https://localhost:8080/"
|
65 |
+
},
|
66 |
+
"id": "uGE4z27oMuZx",
|
67 |
+
"outputId": "a26407d4-2628-44d4-be16-f3826a043eb8"
|
68 |
+
},
|
69 |
+
"execution_count": 10,
|
70 |
+
"outputs": [
|
71 |
+
{
|
72 |
+
"output_type": "stream",
|
73 |
+
"name": "stderr",
|
74 |
+
"text": [
|
75 |
+
"All PyTorch model weights were used when initializing TFGPT2LMHeadModel.\n",
|
76 |
+
"\n",
|
77 |
+
"All the weights of TFGPT2LMHeadModel were initialized from the PyTorch model.\n",
|
78 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFGPT2LMHeadModel for predictions without further training.\n"
|
79 |
+
]
|
80 |
+
}
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"source": [
|
86 |
+
"def generate_text(input_Prompt):\n",
|
87 |
+
" input_ids = tokenizer.encode(input_Prompt, return_tensors='tf')\n",
|
88 |
+
" beam_output = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2, early_stopping=False)\n",
|
89 |
+
" output = tokenizer.decode(beam_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)\n",
|
90 |
+
" return \".\".join(output.split(\".\")[:-1]) + \".\"\n"
|
91 |
+
],
|
92 |
+
"metadata": {
|
93 |
+
"id": "hoKSOw9eMvQt"
|
94 |
+
},
|
95 |
+
"execution_count": 16,
|
96 |
+
"outputs": []
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"source": [
|
101 |
+
"output_text = gr.Textbox()\n",
|
102 |
+
"\n",
|
103 |
+
"gr. Interface(generate_text,\"textbox\", output_text, title=\"GPT-2\",\n",
|
104 |
+
"\n",
|
105 |
+
"description=\"OpenAI's GPT-2 is an unsupervised language model that \\ can generate coherent text. Go ahead and input a sentence and see what it completes \\ it with! Takes around 20s to run.\").launch()"
|
106 |
+
],
|
107 |
+
"metadata": {
|
108 |
+
"colab": {
|
109 |
+
"base_uri": "https://localhost:8080/",
|
110 |
+
"height": 648
|
111 |
+
},
|
112 |
+
"id": "cM-5NqQ-M1dn",
|
113 |
+
"outputId": "c52b7b5d-43b1-4bc7-aebe-761ddb8be371"
|
114 |
+
},
|
115 |
+
"execution_count": 17,
|
116 |
+
"outputs": [
|
117 |
+
{
|
118 |
+
"output_type": "stream",
|
119 |
+
"name": "stdout",
|
120 |
+
"text": [
|
121 |
+
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
122 |
+
"\n",
|
123 |
+
"Colab notebook detected. To show errors in colab notebook, set debug=True in launch()\n",
|
124 |
+
"Running on public URL: https://ac6c205dbfaa7333aa.gradio.live\n",
|
125 |
+
"\n",
|
126 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"output_type": "display_data",
|
131 |
+
"data": {
|
132 |
+
"text/plain": [
|
133 |
+
"<IPython.core.display.HTML object>"
|
134 |
+
],
|
135 |
+
"text/html": [
|
136 |
+
"<div><iframe src=\"https://ac6c205dbfaa7333aa.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
"metadata": {}
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"output_type": "execute_result",
|
143 |
+
"data": {
|
144 |
+
"text/plain": []
|
145 |
+
},
|
146 |
+
"metadata": {},
|
147 |
+
"execution_count": 17
|
148 |
+
}
|
149 |
+
]
|
150 |
+
}
|
151 |
+
]
|
152 |
+
}
|