muzammil-eds's picture
Create app.py
39ac371 verified
import gradio as gr
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "muzammil-eds/Meta-Llama-3.1-8B-Instruct-English-to-French-v2",
dtype = None,
load_in_4bit = True,
)
FastLanguageModel.for_inference(model)
def process_input(model, tokenizer, input_text):
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
Translate the following English text to French.
### Input:
{}
### Response:
"""
formatted_prompt = prompt.format( input_text)
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True)
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
response_start = "### Response:"
response = decoded_output.split(response_start)[-1].strip()
return response
# Define the Gradio interface
def gradio_app(input_text):
output = process_input(model, tokenizer, input_text)
return output
# Create the Gradio interface
interface = gr.Interface(
fn=gradio_app,
inputs=gr.Textbox(label="Enter your input text"),
outputs=gr.Textbox(label="Generated Output"),
title="Text to Response Generator",
description="Enter input text and get a response."
)
interface.launch()