Spaces:
Running
Running
Fangrui Liu
commited on
Commit
·
5ebcc54
1
Parent(s):
eb05b74
initiate
Browse files
app.py
ADDED
@@ -0,0 +1,398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
from turtle import onclick
|
3 |
+
import streamlit as st
|
4 |
+
import numpy as np
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from multilingual_clip import pt_multilingual_clip
|
8 |
+
from transformers import CLIPTokenizerFast, AutoTokenizer
|
9 |
+
import torch
|
10 |
+
import logging
|
11 |
+
from os import environ
|
12 |
+
environ['TOKENIZERS_PARALLELISM'] = 'true'
|
13 |
+
|
14 |
+
from myscaledb import Client
|
15 |
+
|
16 |
+
DB_NAME = "mqdb_demo.unsplash_25k_clip_indexer"
|
17 |
+
MODEL_ID = 'M-CLIP/XLM-Roberta-Large-Vit-B-32'
|
18 |
+
DIMS = 512
|
19 |
+
# Ignore some bad links (broken in the dataset already)
|
20 |
+
BAD_IDS = {'9_9hzZVjV8s', 'RDs0THr4lGs', 'vigsqYux_-8', 'rsJtMXn3p_c', 'AcG-unN00gw', 'r1R_0ZNUcx0'}
|
21 |
+
|
22 |
+
@st.experimental_singleton(show_spinner=False)
|
23 |
+
def init_clip():
|
24 |
+
""" Initialize CLIP Model
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
Tokenizer: CLIPTokenizerFast (which convert words into embeddings)
|
28 |
+
"""
|
29 |
+
clip = pt_multilingual_clip.MultilingualCLIP.from_pretrained(MODEL_ID)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
31 |
+
return tokenizer, clip
|
32 |
+
|
33 |
+
@st.experimental_singleton(show_spinner=False)
|
34 |
+
def init_db():
|
35 |
+
""" Initialize the Database Connection
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
meta_field: Meta field that records if an image is viewed or not
|
39 |
+
client: Database connection object
|
40 |
+
"""
|
41 |
+
client = Client(url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
42 |
+
# We can check if the connection is alive
|
43 |
+
assert client.is_alive()
|
44 |
+
meta_field = {}
|
45 |
+
return meta_field, client
|
46 |
+
|
47 |
+
@st.experimental_singleton(show_spinner=False)
|
48 |
+
def init_query_num():
|
49 |
+
print("init query_num")
|
50 |
+
return 0
|
51 |
+
|
52 |
+
def query(xq, top_k=10):
|
53 |
+
""" Query TopK matched w.r.t a given vector
|
54 |
+
|
55 |
+
Args:
|
56 |
+
xq (numpy.ndarray or list of floats): Query vector
|
57 |
+
top_k (int, optional): Number of matched vectors. Defaults to 10.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
matches: list of Records object. Keys referrring to selected columns
|
61 |
+
"""
|
62 |
+
attempt = 0
|
63 |
+
xq = xq / np.linalg.norm(xq)
|
64 |
+
while attempt < 3:
|
65 |
+
try:
|
66 |
+
xq_s = f"[{', '.join([str(float(fnum)) for fnum in list(xq)])}]"
|
67 |
+
|
68 |
+
print('Excluded pre:', st.session_state.meta)
|
69 |
+
if len(st.session_state.meta) > 0:
|
70 |
+
exclude_list = ','.join([f'\'{i}\'' for i, v in st.session_state.meta.items() if v >= 1])
|
71 |
+
print("Excluded:", exclude_list)
|
72 |
+
# Using PREWHERE allows you to do column filter before vector search
|
73 |
+
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
74 |
+
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
75 |
+
FROM {DB_NAME} PREWHERE id NOT IN ({exclude_list})")
|
76 |
+
else:
|
77 |
+
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
78 |
+
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
79 |
+
FROM {DB_NAME}")
|
80 |
+
# real_xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
81 |
+
# 1 - arraySum(arrayMap((x, y) -> x * y, {xq_s}, vector)) AS dist\
|
82 |
+
# FROM {DB_NAME} ORDER BY dist LIMIT {top_k}")
|
83 |
+
# FIXME: This is causing freezing on DB
|
84 |
+
real_xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
85 |
+
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
86 |
+
FROM {DB_NAME}")
|
87 |
+
top_k = real_xc
|
88 |
+
xc = [xi for xi in xc if xi['id'] not in st.session_state.meta or \
|
89 |
+
st.session_state.meta[xi['id']] < 1]
|
90 |
+
logging.info(f'{len(xc)} records returned, {[_i["id"] for _i in xc]}')
|
91 |
+
matches = xc
|
92 |
+
break
|
93 |
+
except Exception as e:
|
94 |
+
# force reload if we have trouble on connections or something else
|
95 |
+
logging.warning(str(e))
|
96 |
+
_, st.session_state.index = init_db()
|
97 |
+
attempt += 1
|
98 |
+
matches = []
|
99 |
+
if len(matches) == 0:
|
100 |
+
logging.error(f"No matches found for '{DB_NAME}'")
|
101 |
+
return matches, top_k
|
102 |
+
|
103 |
+
@st.experimental_singleton(show_spinner=False)
|
104 |
+
def init_random_query():
|
105 |
+
xq = np.random.rand(DIMS).tolist()
|
106 |
+
return xq, xq.copy()
|
107 |
+
|
108 |
+
class Classifier:
|
109 |
+
""" Zero-shot Classifier
|
110 |
+
This Classifier provides proxy regarding to the user's reaction to the probed images.
|
111 |
+
The proxy will replace the original query vector generated by prompted vector and finally
|
112 |
+
give the user a satisfying retrieval result.
|
113 |
+
|
114 |
+
This can be commonly seen in a recommendation system. The classifier will recommend more
|
115 |
+
precise result as it accumulating user's activity.
|
116 |
+
"""
|
117 |
+
def __init__(self, xq: list):
|
118 |
+
# initialize model with DIMS input size and 1 output
|
119 |
+
# note that the bias is ignored, as we only focus on the inner product result
|
120 |
+
self.model = torch.nn.Linear(DIMS, 1, bias=False)
|
121 |
+
# convert initial query `xq` to tensor parameter to init weights
|
122 |
+
init_weight = torch.Tensor(xq).reshape(1, -1)
|
123 |
+
self.model.weight = torch.nn.Parameter(init_weight)
|
124 |
+
# init loss and optimizer
|
125 |
+
self.loss = torch.nn.BCEWithLogitsLoss()
|
126 |
+
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
|
127 |
+
|
128 |
+
def fit(self, X: list, y: list, iters: int = 5):
|
129 |
+
# convert X and y to tensor
|
130 |
+
X = torch.Tensor(X)
|
131 |
+
y = torch.Tensor(y).reshape(-1, 1)
|
132 |
+
for i in range(iters):
|
133 |
+
# zero gradients
|
134 |
+
self.optimizer.zero_grad()
|
135 |
+
# Normalize the weight before inference
|
136 |
+
# This will constrain the gradient or you will have an explosion on query vector
|
137 |
+
self.model.weight.data = self.model.weight.data / torch.norm(self.model.weight.data, p=2, dim=-1)
|
138 |
+
# forward pass
|
139 |
+
out = self.model(X)
|
140 |
+
# compute loss
|
141 |
+
loss = self.loss(out, y)
|
142 |
+
# backward pass
|
143 |
+
loss.backward()
|
144 |
+
# update weights
|
145 |
+
self.optimizer.step()
|
146 |
+
|
147 |
+
def get_weights(self):
|
148 |
+
xq = self.model.weight.detach().numpy()[0].tolist()
|
149 |
+
return xq
|
150 |
+
|
151 |
+
def prompt2vec(prompt: str):
|
152 |
+
""" Convert prompt into a computational vector
|
153 |
+
|
154 |
+
Args:
|
155 |
+
prompt (str): Text to be tokenized
|
156 |
+
|
157 |
+
Returns:
|
158 |
+
xq: vector from the tokenizer, representing the original prompt
|
159 |
+
"""
|
160 |
+
# inputs = tokenizer(prompt, return_tensors='pt')
|
161 |
+
# out = clip.get_text_features(**inputs)
|
162 |
+
out = clip.forward(prompt, tokenizer)
|
163 |
+
xq = out.squeeze(0).cpu().detach().numpy().tolist()
|
164 |
+
return xq
|
165 |
+
|
166 |
+
def pil_to_bytes(img):
|
167 |
+
""" Convert a Pillow image into base64
|
168 |
+
|
169 |
+
Args:
|
170 |
+
img (PIL.Image): Pillow (PIL) Image
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
img_bin: image in base64 format
|
174 |
+
"""
|
175 |
+
with BytesIO() as buf:
|
176 |
+
img.save(buf, format='jpeg')
|
177 |
+
img_bin = buf.getvalue()
|
178 |
+
img_bin = base64.b64encode(img_bin).decode('utf-8')
|
179 |
+
return img_bin
|
180 |
+
|
181 |
+
def card(i, url):
|
182 |
+
return f'<img id="img{i}" src="{url}" width="200px;">'
|
183 |
+
|
184 |
+
def card_with_conf(i, conf, url):
|
185 |
+
conf = "%.4f"%(conf)
|
186 |
+
return f'<img id="img{i}" src="{url}" width="200px;" style="margin:50px 50px"><b>Relevance: {conf}</b>'
|
187 |
+
|
188 |
+
def get_top_k(xq, top_k=9):
|
189 |
+
""" wrapper function for query
|
190 |
+
|
191 |
+
Args:
|
192 |
+
xq (numpy.ndarray or list of floats): Query vector
|
193 |
+
top_k (int, optional): Number of returned vectors. Defaults to 9.
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
matches: See `query()`
|
197 |
+
"""
|
198 |
+
matches = query(
|
199 |
+
xq, top_k=top_k
|
200 |
+
)
|
201 |
+
return matches
|
202 |
+
|
203 |
+
def tune(X, y, iters=2):
|
204 |
+
""" Train the Zero-shot Classifier
|
205 |
+
|
206 |
+
Args:
|
207 |
+
X (numpy.ndarray): Input vectors (retreived vectors)
|
208 |
+
y (list of floats or numpy.ndarray): Scores given by user
|
209 |
+
iters (int, optional): iterations of updates to be run
|
210 |
+
"""
|
211 |
+
# train the classifier
|
212 |
+
st.session_state.clf.fit(X, y, iters=iters)
|
213 |
+
# extract new vector
|
214 |
+
st.session_state.xq = st.session_state.clf.get_weights()
|
215 |
+
|
216 |
+
|
217 |
+
def refresh_index():
|
218 |
+
""" Clean the session
|
219 |
+
"""
|
220 |
+
del st.session_state["meta"]
|
221 |
+
st.session_state.meta = {}
|
222 |
+
st.session_state.query_num = 0
|
223 |
+
logging.info(f"Refresh for '{st.session_state.meta}'")
|
224 |
+
init_db.clear()
|
225 |
+
# refresh session states
|
226 |
+
st.session_state.meta, st.session_state.index = init_db()
|
227 |
+
del st.session_state.clf, st.session_state.xq
|
228 |
+
|
229 |
+
def calc_dist():
|
230 |
+
xq = np.array(st.session_state.xq)
|
231 |
+
orig_xq = np.array(st.session_state.orig_xq)
|
232 |
+
return np.linalg.norm(xq - orig_xq)
|
233 |
+
|
234 |
+
def submit():
|
235 |
+
""" Tune the model w.r.t given score from user.
|
236 |
+
"""
|
237 |
+
st.session_state.query_num += 1
|
238 |
+
matches = st.session_state.matches
|
239 |
+
velocity = 1 #st.session_state.velocity
|
240 |
+
scores = {}
|
241 |
+
states = [
|
242 |
+
st.session_state[f"input{i}"] for i in range(len(matches))
|
243 |
+
]
|
244 |
+
for i, match in enumerate(matches):
|
245 |
+
scores[match['id']] = float(states[i])
|
246 |
+
# reset states to 1.0
|
247 |
+
for i in range(len(matches)):
|
248 |
+
st.session_state[f"input{i}"] = 1.0
|
249 |
+
# get training data and labels
|
250 |
+
X = list([match['vector'] for match in matches])
|
251 |
+
y = [v for v in list(scores.values())]
|
252 |
+
tune(X, y, iters=int(st.session_state.iters))
|
253 |
+
# update record metadata after training
|
254 |
+
for match in matches:
|
255 |
+
st.session_state.meta[match['id']] = 1
|
256 |
+
logging.info(f"Exclude List: {st.session_state.meta}")
|
257 |
+
|
258 |
+
def delete_element(element):
|
259 |
+
del element
|
260 |
+
|
261 |
+
st.markdown("""
|
262 |
+
<link
|
263 |
+
rel="stylesheet"
|
264 |
+
href="https://fonts.googleapis.com/css?family=Roboto:300,400,500,700&display=swap"
|
265 |
+
/>
|
266 |
+
""", unsafe_allow_html=True)
|
267 |
+
|
268 |
+
messages = [
|
269 |
+
f"""
|
270 |
+
Find most relevant examples from a large visual dataset by combining text query and few-shot learning.
|
271 |
+
""",
|
272 |
+
f"""
|
273 |
+
Then then you can adjust the weight on each image. Those weights should **represent how much it
|
274 |
+
can meet your preference**. You can either choose the images that match your prompt or change
|
275 |
+
your mind.
|
276 |
+
|
277 |
+
You might notice that there is a iteration slide bar on the top of all retrieved images. This will
|
278 |
+
control the speed of changes on vectors. More **iterations** will change the vector faster while
|
279 |
+
lower values on **iterations** will make the retrieval smoother.
|
280 |
+
""",
|
281 |
+
f"""
|
282 |
+
This example will manage to train a classifier to distinguish between samples you want and samples
|
283 |
+
you don't want. By initializing the weight from prompt, you can get a good enough classifier to cluster
|
284 |
+
images you want to search. If you think the result is not as perfect as you expected, you can also
|
285 |
+
supervise the classifer with **Relevance** annotation. If you cannot see any difference in Top-K
|
286 |
+
Retrieved results, try to enlarge **Number of Iteration**
|
287 |
+
""",
|
288 |
+
# TODO @ fangruil: fill the link with our tech blog
|
289 |
+
f"""
|
290 |
+
The app uses the [MyScale](http://mqdb.page.moqi.ai/mqdb-docs/) to store and query images
|
291 |
+
using vector search. All images are sourced from the
|
292 |
+
[Unsplash Lite dataset](https://unsplash-datasets.s3.amazonaws.com/lite/latest/unsplash-research-dataset-lite-latest.zip)
|
293 |
+
and encoded using [OpenAI's CLIP](https://huggingface.co/openai/clip-vit-base-patch32). We explain how
|
294 |
+
it all works [here]().
|
295 |
+
"""
|
296 |
+
]
|
297 |
+
|
298 |
+
with st.spinner("Connecting DB..."):
|
299 |
+
st.session_state.meta, st.session_state.index = init_db()
|
300 |
+
|
301 |
+
with st.spinner("Loading Models..."):
|
302 |
+
# Initialize CLIP model
|
303 |
+
if 'xq' not in st.session_state:
|
304 |
+
tokenizer, clip = init_clip()
|
305 |
+
st.session_state.query_num = 0
|
306 |
+
|
307 |
+
if 'xq' not in st.session_state:
|
308 |
+
# If it's a fresh start
|
309 |
+
if st.session_state.query_num < len(messages):
|
310 |
+
msg = messages[st.session_state.query_num]
|
311 |
+
else:
|
312 |
+
msg = messages[-1]
|
313 |
+
|
314 |
+
# Basic Layout
|
315 |
+
|
316 |
+
with st.container():
|
317 |
+
st.title("Visual Dataset Explorer")
|
318 |
+
start = [st.empty(), st.empty(), st.empty(), st.empty(), st.empty()]
|
319 |
+
start[0].info(msg)
|
320 |
+
prompt = start[1].text_input("Prompt:", value="", placeholder="Examples: a photo of white dogs, cats in the snow, a house by the lake")
|
321 |
+
start[2].markdown(
|
322 |
+
'<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>',
|
323 |
+
unsafe_allow_html=True)
|
324 |
+
with start[3]:
|
325 |
+
col = st.columns(8)
|
326 |
+
prompt_xq = col[6].button("Prompt", disabled=len(prompt) == 0)
|
327 |
+
random_xq = col[7].button("Random", disabled=len(prompt) != 0)
|
328 |
+
if random_xq:
|
329 |
+
# Randomly pick a vector to query
|
330 |
+
xq, orig_xq = init_random_query()
|
331 |
+
st.session_state.xq = xq
|
332 |
+
st.session_state.orig_xq = orig_xq
|
333 |
+
_ = [elem.empty() for elem in start]
|
334 |
+
elif prompt_xq:
|
335 |
+
print(f"Input prompt is {prompt}")
|
336 |
+
# Tokenize the vectors
|
337 |
+
xq = prompt2vec(prompt)
|
338 |
+
st.session_state.xq = xq
|
339 |
+
st.session_state.orig_xq = xq
|
340 |
+
_ = [elem.empty() for elem in start]
|
341 |
+
|
342 |
+
if 'xq' in st.session_state:
|
343 |
+
# If it is not a fresh start
|
344 |
+
if st.session_state.query_num+1 < len(messages):
|
345 |
+
msg = messages[st.session_state.query_num+1]
|
346 |
+
else:
|
347 |
+
msg = messages[-1]
|
348 |
+
# initialize classifier
|
349 |
+
if 'clf' not in st.session_state:
|
350 |
+
st.session_state.clf = Classifier(st.session_state.xq)
|
351 |
+
|
352 |
+
# if we want to display images we end up here
|
353 |
+
st.info(msg)
|
354 |
+
# first retrieve images from pinecone
|
355 |
+
st.session_state.matches, st.session_state.top_k = get_top_k(st.session_state.clf.get_weights(), top_k=9)
|
356 |
+
with st.container():
|
357 |
+
with st.sidebar:
|
358 |
+
with st.container():
|
359 |
+
st.header("Top K Nearest in Database")
|
360 |
+
for i, k in enumerate(st.session_state.top_k):
|
361 |
+
url = k["url"]
|
362 |
+
url += "?q=75&fm=jpg&w=200&fit=max"
|
363 |
+
if k["id"] not in BAD_IDS:
|
364 |
+
disabled = False
|
365 |
+
else:
|
366 |
+
disable = True
|
367 |
+
dist = np.matmul(st.session_state.clf.get_weights() / np.linalg.norm(st.session_state.clf.get_weights()),
|
368 |
+
np.array(k["vector"]).T)
|
369 |
+
st.markdown(card_with_conf(i, dist, url), unsafe_allow_html=True)
|
370 |
+
|
371 |
+
# once retrieved, display them alongside checkboxes in a form
|
372 |
+
with st.form("batch", clear_on_submit=False):
|
373 |
+
st.session_state.iters = st.slider("Number of Iterations to Update", min_value=0, max_value=10, step=1, value=2)
|
374 |
+
col = st.columns([1,9])
|
375 |
+
col[0].form_submit_button("Train!", on_click=submit)
|
376 |
+
col[1].form_submit_button("Choose a new prompt", on_click=refresh_index)
|
377 |
+
# we have three columns in the form
|
378 |
+
cols = st.columns(3)
|
379 |
+
for i, match in enumerate(st.session_state.matches):
|
380 |
+
# find good url
|
381 |
+
url = match["url"]
|
382 |
+
url += "?q=75&fm=jpg&w=200&fit=max"
|
383 |
+
if match["id"] not in BAD_IDS:
|
384 |
+
disabled = False
|
385 |
+
else:
|
386 |
+
disable = True
|
387 |
+
# the card shows an image and a checkbox
|
388 |
+
cols[i%3].markdown(card(i, url), unsafe_allow_html=True)
|
389 |
+
# we access the values of the checkbox via st.session_state[f"input{i}"]
|
390 |
+
cols[i%3].slider(
|
391 |
+
"Relevance",
|
392 |
+
min_value=0.0,
|
393 |
+
max_value=1.0,
|
394 |
+
value=1.0,
|
395 |
+
step=0.05,
|
396 |
+
key=f"input{i}",
|
397 |
+
disabled=disabled
|
398 |
+
)
|