Spaces:
Running
Running
Fangrui Liu
commited on
Commit
·
725da8c
1
Parent(s):
c8fbf76
add features and datasets
Browse files- .gitignore +1 -0
- app.py +115 -43
- requirements.txt +2 -1
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.streamlit
|
app.py
CHANGED
@@ -7,15 +7,22 @@ from transformers import CLIPTokenizerFast, AutoTokenizer
|
|
7 |
import torch
|
8 |
import logging
|
9 |
from os import environ
|
|
|
10 |
environ['TOKENIZERS_PARALLELISM'] = 'true'
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
DB_NAME = "mqdb_demo.unsplash_25k_clip_indexer"
|
15 |
MODEL_ID = 'M-CLIP/XLM-Roberta-Large-Vit-B-32'
|
16 |
DIMS = 512
|
17 |
# Ignore some bad links (broken in the dataset already)
|
18 |
-
BAD_IDS = {'9_9hzZVjV8s', 'RDs0THr4lGs', 'vigsqYux_-8',
|
|
|
|
|
19 |
|
20 |
@st.experimental_singleton(show_spinner=False)
|
21 |
def init_clip():
|
@@ -28,6 +35,7 @@ def init_clip():
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
29 |
return tokenizer, clip
|
30 |
|
|
|
31 |
@st.experimental_singleton(show_spinner=False)
|
32 |
def init_db():
|
33 |
""" Initialize the Database Connection
|
@@ -36,17 +44,20 @@ def init_db():
|
|
36 |
meta_field: Meta field that records if an image is viewed or not
|
37 |
client: Database connection object
|
38 |
"""
|
39 |
-
client = Client(
|
|
|
40 |
# We can check if the connection is alive
|
41 |
assert client.is_alive()
|
42 |
meta_field = {}
|
43 |
return meta_field, client
|
44 |
|
|
|
45 |
@st.experimental_singleton(show_spinner=False)
|
46 |
def init_query_num():
|
47 |
print("init query_num")
|
48 |
return 0
|
49 |
|
|
|
50 |
def query(xq, top_k=10):
|
51 |
""" Query TopK matched w.r.t a given vector
|
52 |
|
@@ -62,30 +73,29 @@ def query(xq, top_k=10):
|
|
62 |
while attempt < 3:
|
63 |
try:
|
64 |
xq_s = f"[{', '.join([str(float(fnum)) for fnum in list(xq)])}]"
|
65 |
-
|
66 |
print('Excluded pre:', st.session_state.meta)
|
67 |
if len(st.session_state.meta) > 0:
|
68 |
-
exclude_list = ','.join(
|
|
|
69 |
print("Excluded:", exclude_list)
|
70 |
# Using PREWHERE allows you to do column filter before vector search
|
71 |
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
72 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
73 |
-
FROM {
|
|
|
74 |
else:
|
75 |
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
76 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
77 |
-
FROM {
|
78 |
-
# real_xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
79 |
-
# 1 - arraySum(arrayMap((x, y) -> x * y, {xq_s}, vector)) AS dist\
|
80 |
-
# FROM {DB_NAME} ORDER BY dist LIMIT {top_k}")
|
81 |
-
# FIXME: This is causing freezing on DB
|
82 |
real_xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
83 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
84 |
-
FROM {
|
85 |
top_k = real_xc
|
86 |
-
xc = [xi for xi in xc if xi['id'] not in st.session_state.meta or
|
87 |
-
|
88 |
-
logging.info(
|
|
|
89 |
matches = xc
|
90 |
break
|
91 |
except Exception as e:
|
@@ -98,20 +108,23 @@ def query(xq, top_k=10):
|
|
98 |
logging.error(f"No matches found for '{DB_NAME}'")
|
99 |
return matches, top_k
|
100 |
|
|
|
101 |
@st.experimental_singleton(show_spinner=False)
|
102 |
def init_random_query():
|
103 |
xq = np.random.rand(DIMS).tolist()
|
104 |
return xq, xq.copy()
|
105 |
|
|
|
106 |
class Classifier:
|
107 |
""" Zero-shot Classifier
|
108 |
This Classifier provides proxy regarding to the user's reaction to the probed images.
|
109 |
The proxy will replace the original query vector generated by prompted vector and finally
|
110 |
give the user a satisfying retrieval result.
|
111 |
-
|
112 |
This can be commonly seen in a recommendation system. The classifier will recommend more
|
113 |
precise result as it accumulating user's activity.
|
114 |
"""
|
|
|
115 |
def __init__(self, xq: list):
|
116 |
# initialize model with DIMS input size and 1 output
|
117 |
# note that the bias is ignored, as we only focus on the inner product result
|
@@ -122,7 +135,7 @@ class Classifier:
|
|
122 |
# init loss and optimizer
|
123 |
self.loss = torch.nn.BCEWithLogitsLoss()
|
124 |
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
|
125 |
-
|
126 |
def fit(self, X: list, y: list, iters: int = 5):
|
127 |
# convert X and y to tensor
|
128 |
X = torch.Tensor(X)
|
@@ -132,7 +145,8 @@ class Classifier:
|
|
132 |
self.optimizer.zero_grad()
|
133 |
# Normalize the weight before inference
|
134 |
# This will constrain the gradient or you will have an explosion on query vector
|
135 |
-
self.model.weight.data = self.model.weight.data /
|
|
|
136 |
# forward pass
|
137 |
out = self.model(X)
|
138 |
# compute loss
|
@@ -141,11 +155,17 @@ class Classifier:
|
|
141 |
loss.backward()
|
142 |
# update weights
|
143 |
self.optimizer.step()
|
144 |
-
|
145 |
def get_weights(self):
|
146 |
xq = self.model.weight.detach().numpy()[0].tolist()
|
147 |
return xq
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
def prompt2vec(prompt: str):
|
150 |
""" Convert prompt into a computational vector
|
151 |
|
@@ -161,6 +181,7 @@ def prompt2vec(prompt: str):
|
|
161 |
xq = out.squeeze(0).cpu().detach().numpy().tolist()
|
162 |
return xq
|
163 |
|
|
|
164 |
def pil_to_bytes(img):
|
165 |
""" Convert a Pillow image into base64
|
166 |
|
@@ -176,13 +197,16 @@ def pil_to_bytes(img):
|
|
176 |
img_bin = base64.b64encode(img_bin).decode('utf-8')
|
177 |
return img_bin
|
178 |
|
|
|
179 |
def card(i, url):
|
180 |
return f'<img id="img{i}" src="{url}" width="200px;">'
|
181 |
|
|
|
182 |
def card_with_conf(i, conf, url):
|
183 |
-
conf = "%.4f"%(conf)
|
184 |
return f'<img id="img{i}" src="{url}" width="200px;" style="margin:50px 50px"><div><p><b>Relevance: {conf}</b></p></div>'
|
185 |
|
|
|
186 |
def get_top_k(xq, top_k=9):
|
187 |
""" wrapper function for query
|
188 |
|
@@ -198,6 +222,7 @@ def get_top_k(xq, top_k=9):
|
|
198 |
)
|
199 |
return matches
|
200 |
|
|
|
201 |
def tune(X, y, iters=2):
|
202 |
""" Train the Zero-shot Classifier
|
203 |
|
@@ -206,6 +231,7 @@ def tune(X, y, iters=2):
|
|
206 |
y (list of floats or numpy.ndarray): Scores given by user
|
207 |
iters (int, optional): iterations of updates to be run
|
208 |
"""
|
|
|
209 |
# train the classifier
|
210 |
st.session_state.clf.fit(X, y, iters=iters)
|
211 |
# extract new vector
|
@@ -224,17 +250,19 @@ def refresh_index():
|
|
224 |
st.session_state.meta, st.session_state.index = init_db()
|
225 |
del st.session_state.clf, st.session_state.xq
|
226 |
|
|
|
227 |
def calc_dist():
|
228 |
xq = np.array(st.session_state.xq)
|
229 |
orig_xq = np.array(st.session_state.orig_xq)
|
230 |
return np.linalg.norm(xq - orig_xq)
|
231 |
|
|
|
232 |
def submit():
|
233 |
""" Tune the model w.r.t given score from user.
|
234 |
"""
|
235 |
st.session_state.query_num += 1
|
236 |
matches = st.session_state.matches
|
237 |
-
velocity = 1
|
238 |
scores = {}
|
239 |
states = [
|
240 |
st.session_state[f"input{i}"] for i in range(len(matches))
|
@@ -253,9 +281,11 @@ def submit():
|
|
253 |
st.session_state.meta[match['id']] = 1
|
254 |
logging.info(f"Exclude List: {st.session_state.meta}")
|
255 |
|
|
|
256 |
def delete_element(element):
|
257 |
del element
|
258 |
|
|
|
259 |
st.markdown("""
|
260 |
<link
|
261 |
rel="stylesheet"
|
@@ -308,32 +338,56 @@ if 'xq' not in st.session_state:
|
|
308 |
msg = messages[st.session_state.query_num]
|
309 |
else:
|
310 |
msg = messages[-1]
|
311 |
-
|
312 |
# Basic Layout
|
313 |
-
|
314 |
with st.container():
|
|
|
|
|
315 |
st.title("Visual Dataset Explorer")
|
316 |
-
start = [st.empty(), st.empty(), st.empty(), st.empty(),
|
|
|
317 |
start[0].info(msg)
|
318 |
-
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
320 |
'<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>\
|
321 |
<p>🌟 We also support multi-language search. Type any language you know to search! ⌨️ </p>',
|
322 |
unsafe_allow_html=True)
|
323 |
-
|
|
|
|
|
|
|
|
|
324 |
col = st.columns(8)
|
|
|
325 |
prompt_xq = col[6].button("Prompt", disabled=len(prompt) == 0)
|
326 |
-
random_xq = col[7].button("Random", disabled=
|
|
|
|
|
327 |
if random_xq:
|
328 |
# Randomly pick a vector to query
|
329 |
xq, orig_xq = init_random_query()
|
330 |
st.session_state.xq = xq
|
331 |
st.session_state.orig_xq = orig_xq
|
332 |
_ = [elem.empty() for elem in start]
|
333 |
-
elif prompt_xq:
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
st.session_state.xq = xq
|
338 |
st.session_state.orig_xq = xq
|
339 |
_ = [elem.empty() for elem in start]
|
@@ -347,11 +401,21 @@ if 'xq' in st.session_state:
|
|
347 |
# initialize classifier
|
348 |
if 'clf' not in st.session_state:
|
349 |
st.session_state.clf = Classifier(st.session_state.xq)
|
350 |
-
|
351 |
# if we want to display images we end up here
|
352 |
st.info(msg)
|
353 |
# first retrieve images from pinecone
|
354 |
-
st.session_state.matches, st.session_state.top_k = get_top_k(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
with st.container():
|
356 |
with st.sidebar:
|
357 |
with st.container():
|
@@ -364,15 +428,23 @@ if 'xq' in st.session_state:
|
|
364 |
else:
|
365 |
disable = True
|
366 |
dist = np.matmul(st.session_state.clf.get_weights() / np.linalg.norm(st.session_state.clf.get_weights()),
|
367 |
-
|
368 |
-
st.markdown(card_with_conf(i, dist, url),
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
# once retrieved, display them alongside checkboxes in a form
|
371 |
with st.form("batch", clear_on_submit=False):
|
372 |
-
st.session_state.iters = st.slider(
|
373 |
-
|
|
|
374 |
col[0].form_submit_button("Train!", on_click=submit)
|
375 |
-
col[1].form_submit_button(
|
|
|
376 |
# we have three columns in the form
|
377 |
cols = st.columns(3)
|
378 |
for i, match in enumerate(st.session_state.matches):
|
@@ -384,9 +456,9 @@ if 'xq' in st.session_state:
|
|
384 |
else:
|
385 |
disable = True
|
386 |
# the card shows an image and a checkbox
|
387 |
-
cols[i%3].markdown(card(i, url), unsafe_allow_html=True)
|
388 |
# we access the values of the checkbox via st.session_state[f"input{i}"]
|
389 |
-
cols[i%3].slider(
|
390 |
"Relevance",
|
391 |
min_value=0.0,
|
392 |
max_value=1.0,
|
@@ -394,4 +466,4 @@ if 'xq' in st.session_state:
|
|
394 |
step=0.05,
|
395 |
key=f"input{i}",
|
396 |
disabled=disabled
|
397 |
-
)
|
|
|
7 |
import torch
|
8 |
import logging
|
9 |
from os import environ
|
10 |
+
from myscaledb import Client
|
11 |
environ['TOKENIZERS_PARALLELISM'] = 'true'
|
12 |
|
13 |
+
|
14 |
+
db_name_map = {
|
15 |
+
"Unsplash Photos 25K": "mqdb_demo.unsplash_25k_clip_indexer",
|
16 |
+
"RSICD: Remote Sensing Images 11K": "mqdb_demo.rsicd_clip_b_32",
|
17 |
+
}
|
18 |
|
19 |
DB_NAME = "mqdb_demo.unsplash_25k_clip_indexer"
|
20 |
MODEL_ID = 'M-CLIP/XLM-Roberta-Large-Vit-B-32'
|
21 |
DIMS = 512
|
22 |
# Ignore some bad links (broken in the dataset already)
|
23 |
+
BAD_IDS = {'9_9hzZVjV8s', 'RDs0THr4lGs', 'vigsqYux_-8',
|
24 |
+
'rsJtMXn3p_c', 'AcG-unN00gw', 'r1R_0ZNUcx0'}
|
25 |
+
|
26 |
|
27 |
@st.experimental_singleton(show_spinner=False)
|
28 |
def init_clip():
|
|
|
35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
36 |
return tokenizer, clip
|
37 |
|
38 |
+
|
39 |
@st.experimental_singleton(show_spinner=False)
|
40 |
def init_db():
|
41 |
""" Initialize the Database Connection
|
|
|
44 |
meta_field: Meta field that records if an image is viewed or not
|
45 |
client: Database connection object
|
46 |
"""
|
47 |
+
client = Client(
|
48 |
+
url=st.secrets["DB_URL"], user=st.secrets["USER"], password=st.secrets["PASSWD"])
|
49 |
# We can check if the connection is alive
|
50 |
assert client.is_alive()
|
51 |
meta_field = {}
|
52 |
return meta_field, client
|
53 |
|
54 |
+
|
55 |
@st.experimental_singleton(show_spinner=False)
|
56 |
def init_query_num():
|
57 |
print("init query_num")
|
58 |
return 0
|
59 |
|
60 |
+
|
61 |
def query(xq, top_k=10):
|
62 |
""" Query TopK matched w.r.t a given vector
|
63 |
|
|
|
73 |
while attempt < 3:
|
74 |
try:
|
75 |
xq_s = f"[{', '.join([str(float(fnum)) for fnum in list(xq)])}]"
|
76 |
+
|
77 |
print('Excluded pre:', st.session_state.meta)
|
78 |
if len(st.session_state.meta) > 0:
|
79 |
+
exclude_list = ','.join(
|
80 |
+
[f'\'{i}\'' for i, v in st.session_state.meta.items() if v >= 1])
|
81 |
print("Excluded:", exclude_list)
|
82 |
# Using PREWHERE allows you to do column filter before vector search
|
83 |
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
84 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
85 |
+
FROM {db_name_map[st.session_state.db_name_ref]} \
|
86 |
+
PREWHERE id NOT IN ({exclude_list})")
|
87 |
else:
|
88 |
xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
89 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
90 |
+
FROM {db_name_map[st.session_state.db_name_ref]}")
|
|
|
|
|
|
|
|
|
91 |
real_xc = st.session_state.index.fetch(f"SELECT id, url, vector,\
|
92 |
distance('topK={top_k}')(vector, {xq_s}) AS dist\
|
93 |
+
FROM {db_name_map[st.session_state.db_name_ref]}")
|
94 |
top_k = real_xc
|
95 |
+
xc = [xi for xi in xc if xi['id'] not in st.session_state.meta or
|
96 |
+
st.session_state.meta[xi['id']] < 1]
|
97 |
+
logging.info(
|
98 |
+
f'{len(xc)} records returned, {[_i["id"] for _i in xc]}')
|
99 |
matches = xc
|
100 |
break
|
101 |
except Exception as e:
|
|
|
108 |
logging.error(f"No matches found for '{DB_NAME}'")
|
109 |
return matches, top_k
|
110 |
|
111 |
+
|
112 |
@st.experimental_singleton(show_spinner=False)
|
113 |
def init_random_query():
|
114 |
xq = np.random.rand(DIMS).tolist()
|
115 |
return xq, xq.copy()
|
116 |
|
117 |
+
|
118 |
class Classifier:
|
119 |
""" Zero-shot Classifier
|
120 |
This Classifier provides proxy regarding to the user's reaction to the probed images.
|
121 |
The proxy will replace the original query vector generated by prompted vector and finally
|
122 |
give the user a satisfying retrieval result.
|
123 |
+
|
124 |
This can be commonly seen in a recommendation system. The classifier will recommend more
|
125 |
precise result as it accumulating user's activity.
|
126 |
"""
|
127 |
+
|
128 |
def __init__(self, xq: list):
|
129 |
# initialize model with DIMS input size and 1 output
|
130 |
# note that the bias is ignored, as we only focus on the inner product result
|
|
|
135 |
# init loss and optimizer
|
136 |
self.loss = torch.nn.BCEWithLogitsLoss()
|
137 |
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
|
138 |
+
|
139 |
def fit(self, X: list, y: list, iters: int = 5):
|
140 |
# convert X and y to tensor
|
141 |
X = torch.Tensor(X)
|
|
|
145 |
self.optimizer.zero_grad()
|
146 |
# Normalize the weight before inference
|
147 |
# This will constrain the gradient or you will have an explosion on query vector
|
148 |
+
self.model.weight.data = self.model.weight.data / \
|
149 |
+
torch.norm(self.model.weight.data, p=2, dim=-1)
|
150 |
# forward pass
|
151 |
out = self.model(X)
|
152 |
# compute loss
|
|
|
155 |
loss.backward()
|
156 |
# update weights
|
157 |
self.optimizer.step()
|
158 |
+
|
159 |
def get_weights(self):
|
160 |
xq = self.model.weight.detach().numpy()[0].tolist()
|
161 |
return xq
|
162 |
|
163 |
+
|
164 |
+
class NormalizingLayer(torch.nn.Module):
|
165 |
+
def forward(self, x):
|
166 |
+
return x / torch.norm(x, dim=-1, keepdim=True)
|
167 |
+
|
168 |
+
|
169 |
def prompt2vec(prompt: str):
|
170 |
""" Convert prompt into a computational vector
|
171 |
|
|
|
181 |
xq = out.squeeze(0).cpu().detach().numpy().tolist()
|
182 |
return xq
|
183 |
|
184 |
+
|
185 |
def pil_to_bytes(img):
|
186 |
""" Convert a Pillow image into base64
|
187 |
|
|
|
197 |
img_bin = base64.b64encode(img_bin).decode('utf-8')
|
198 |
return img_bin
|
199 |
|
200 |
+
|
201 |
def card(i, url):
|
202 |
return f'<img id="img{i}" src="{url}" width="200px;">'
|
203 |
|
204 |
+
|
205 |
def card_with_conf(i, conf, url):
|
206 |
+
conf = "%.4f" % (conf)
|
207 |
return f'<img id="img{i}" src="{url}" width="200px;" style="margin:50px 50px"><div><p><b>Relevance: {conf}</b></p></div>'
|
208 |
|
209 |
+
|
210 |
def get_top_k(xq, top_k=9):
|
211 |
""" wrapper function for query
|
212 |
|
|
|
222 |
)
|
223 |
return matches
|
224 |
|
225 |
+
|
226 |
def tune(X, y, iters=2):
|
227 |
""" Train the Zero-shot Classifier
|
228 |
|
|
|
231 |
y (list of floats or numpy.ndarray): Scores given by user
|
232 |
iters (int, optional): iterations of updates to be run
|
233 |
"""
|
234 |
+
assert len(X) == len(y)
|
235 |
# train the classifier
|
236 |
st.session_state.clf.fit(X, y, iters=iters)
|
237 |
# extract new vector
|
|
|
250 |
st.session_state.meta, st.session_state.index = init_db()
|
251 |
del st.session_state.clf, st.session_state.xq
|
252 |
|
253 |
+
|
254 |
def calc_dist():
|
255 |
xq = np.array(st.session_state.xq)
|
256 |
orig_xq = np.array(st.session_state.orig_xq)
|
257 |
return np.linalg.norm(xq - orig_xq)
|
258 |
|
259 |
+
|
260 |
def submit():
|
261 |
""" Tune the model w.r.t given score from user.
|
262 |
"""
|
263 |
st.session_state.query_num += 1
|
264 |
matches = st.session_state.matches
|
265 |
+
velocity = 1 # st.session_state.velocity
|
266 |
scores = {}
|
267 |
states = [
|
268 |
st.session_state[f"input{i}"] for i in range(len(matches))
|
|
|
281 |
st.session_state.meta[match['id']] = 1
|
282 |
logging.info(f"Exclude List: {st.session_state.meta}")
|
283 |
|
284 |
+
|
285 |
def delete_element(element):
|
286 |
del element
|
287 |
|
288 |
+
|
289 |
st.markdown("""
|
290 |
<link
|
291 |
rel="stylesheet"
|
|
|
338 |
msg = messages[st.session_state.query_num]
|
339 |
else:
|
340 |
msg = messages[-1]
|
341 |
+
prompt = ''
|
342 |
# Basic Layout
|
|
|
343 |
with st.container():
|
344 |
+
if 'prompt' in st.session_state:
|
345 |
+
del st.session_state.prompt
|
346 |
st.title("Visual Dataset Explorer")
|
347 |
+
start = [st.empty(), st.empty(), st.empty(), st.empty(),
|
348 |
+
st.empty(), st.empty(), st.empty()]
|
349 |
start[0].info(msg)
|
350 |
+
st.session_state.db_name_ref = start[1].selectbox(
|
351 |
+
"Select Database:", list(db_name_map.keys()))
|
352 |
+
prompt = start[2].text_input(
|
353 |
+
"Prompt:", value="", placeholder="Examples: playing corgi, 女人举着雨伞, mouette volant au-dessus de la mer, ガラスの花瓶の花 ...")
|
354 |
+
if len(prompt) > 0:
|
355 |
+
st.session_state.prompt = prompt
|
356 |
+
start[3].markdown(
|
357 |
'<p style="color:gray;"> Don\'t know what to search? Try <b>Random</b>!</p>\
|
358 |
<p>🌟 We also support multi-language search. Type any language you know to search! ⌨️ </p>',
|
359 |
unsafe_allow_html=True)
|
360 |
+
upld_model = start[5].file_uploader(
|
361 |
+
"Or you can upload your previous run!", type='onnx')
|
362 |
+
upld_btn = start[6].button(
|
363 |
+
"Used Loaded Weights", disabled=upld_model is None)
|
364 |
+
with start[4]:
|
365 |
col = st.columns(8)
|
366 |
+
has_no_prompt = (len(prompt) == 0 and upld_model is None)
|
367 |
prompt_xq = col[6].button("Prompt", disabled=len(prompt) == 0)
|
368 |
+
random_xq = col[7].button("Random", disabled=not (
|
369 |
+
len(prompt) == 0 and upld_model is None))
|
370 |
+
|
371 |
if random_xq:
|
372 |
# Randomly pick a vector to query
|
373 |
xq, orig_xq = init_random_query()
|
374 |
st.session_state.xq = xq
|
375 |
st.session_state.orig_xq = orig_xq
|
376 |
_ = [elem.empty() for elem in start]
|
377 |
+
elif prompt_xq or upld_btn:
|
378 |
+
if upld_model is not None:
|
379 |
+
# Import vector from a file
|
380 |
+
import onnx
|
381 |
+
from onnx import numpy_helper
|
382 |
+
_model = onnx.load(upld_model)
|
383 |
+
weights = _model.graph.initializer
|
384 |
+
assert len(weights) == 1
|
385 |
+
xq = numpy_helper.to_array(weights[0]).tolist()
|
386 |
+
assert len(xq) == DIMS
|
387 |
+
else:
|
388 |
+
print(f"Input prompt is {prompt}")
|
389 |
+
# Tokenize the vectors
|
390 |
+
xq = prompt2vec(prompt)
|
391 |
st.session_state.xq = xq
|
392 |
st.session_state.orig_xq = xq
|
393 |
_ = [elem.empty() for elem in start]
|
|
|
401 |
# initialize classifier
|
402 |
if 'clf' not in st.session_state:
|
403 |
st.session_state.clf = Classifier(st.session_state.xq)
|
404 |
+
|
405 |
# if we want to display images we end up here
|
406 |
st.info(msg)
|
407 |
# first retrieve images from pinecone
|
408 |
+
st.session_state.matches, st.session_state.top_k = get_top_k(
|
409 |
+
st.session_state.clf.get_weights(), top_k=9)
|
410 |
+
|
411 |
+
# export the model into executable ONNX
|
412 |
+
st.session_state.dnld_model = BytesIO()
|
413 |
+
torch.onnx.export(torch.nn.Sequential(NormalizingLayer(), st.session_state.clf.model),
|
414 |
+
torch.as_tensor(st.session_state.xq).reshape(1, -1),
|
415 |
+
st.session_state.dnld_model,
|
416 |
+
input_names=['input'],
|
417 |
+
output_names=['output'])
|
418 |
+
|
419 |
with st.container():
|
420 |
with st.sidebar:
|
421 |
with st.container():
|
|
|
428 |
else:
|
429 |
disable = True
|
430 |
dist = np.matmul(st.session_state.clf.get_weights() / np.linalg.norm(st.session_state.clf.get_weights()),
|
431 |
+
np.array(k["vector"]).T)
|
432 |
+
st.markdown(card_with_conf(i, dist, url),
|
433 |
+
unsafe_allow_html=True)
|
434 |
+
dnld_nam = st.text_input('Download Name:',
|
435 |
+
f'{(st.session_state.prompt if "prompt" in st.session_state else (upld_model.name.split(".onnx")[0] if upld_model is not None else "model"))}.onnx',
|
436 |
+
max_chars=50)
|
437 |
+
dnld_btn = st.download_button('Download your classifier!',
|
438 |
+
st.session_state.dnld_model,
|
439 |
+
dnld_nam,)
|
440 |
# once retrieved, display them alongside checkboxes in a form
|
441 |
with st.form("batch", clear_on_submit=False):
|
442 |
+
st.session_state.iters = st.slider(
|
443 |
+
"Number of Iterations to Update", min_value=0, max_value=10, step=1, value=2)
|
444 |
+
col = st.columns([1, 9])
|
445 |
col[0].form_submit_button("Train!", on_click=submit)
|
446 |
+
col[1].form_submit_button(
|
447 |
+
"Choose a new prompt", on_click=refresh_index)
|
448 |
# we have three columns in the form
|
449 |
cols = st.columns(3)
|
450 |
for i, match in enumerate(st.session_state.matches):
|
|
|
456 |
else:
|
457 |
disable = True
|
458 |
# the card shows an image and a checkbox
|
459 |
+
cols[i % 3].markdown(card(i, url), unsafe_allow_html=True)
|
460 |
# we access the values of the checkbox via st.session_state[f"input{i}"]
|
461 |
+
cols[i % 3].slider(
|
462 |
"Relevance",
|
463 |
min_value=0.0,
|
464 |
max_value=1.0,
|
|
|
466 |
step=0.05,
|
467 |
key=f"input{i}",
|
468 |
disabled=disabled
|
469 |
+
)
|
requirements.txt
CHANGED
@@ -4,4 +4,5 @@ myscaledb-client
|
|
4 |
streamlit
|
5 |
multilingual-clip
|
6 |
numpy
|
7 |
-
torch
|
|
|
|
4 |
streamlit
|
5 |
multilingual-clip
|
6 |
numpy
|
7 |
+
torch
|
8 |
+
onnx
|