Spaces:
Runtime error
Runtime error
nandovallec
commited on
Commit
·
d457c9f
1
Parent(s):
47eae45
Keep training
Browse files- recommender.py +28 -5
recommender.py
CHANGED
@@ -5,6 +5,15 @@ import numpy as np
|
|
5 |
import pandas as pd
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def inference_row(list_tid, ps_matrix):
|
9 |
ps_matrix_norm = pp.normalize(ps_matrix, axis=1)
|
10 |
length_tid = len(list_tid)
|
@@ -17,6 +26,9 @@ def inference_row(list_tid, ps_matrix):
|
|
17 |
|
18 |
def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
19 |
df_ps_train = pd.read_hdf('model/df_ps_train_new.hdf')
|
|
|
|
|
|
|
20 |
sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
|
21 |
sim_vector = sim_vector.toarray()[0].tolist()
|
22 |
|
@@ -55,7 +67,9 @@ def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
|
55 |
if (n == K):
|
56 |
break
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
|
61 |
def inference_from_tid(list_tid, K=50, MAX_tid=10):
|
@@ -64,10 +78,19 @@ def inference_from_tid(list_tid, K=50, MAX_tid=10):
|
|
64 |
|
65 |
with open(pickle_path, 'rb') as f:
|
66 |
ps_matrix = pickle.load(f)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
def inference_from_uri(list_uri, K=50, MAX_tid=10):
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
|
8 |
+
def add_row_train(df, list_tid):
|
9 |
+
new_pid_add = df.iloc[-1].name +1
|
10 |
+
list_tid_add = list_tid
|
11 |
+
list_pos_add = list(range(len(list_tid_add)))
|
12 |
+
|
13 |
+
df.loc[new_pid_add] = {'tid': list_tid_add,'pos': list_pos_add}
|
14 |
+
return df
|
15 |
+
|
16 |
+
|
17 |
def inference_row(list_tid, ps_matrix):
|
18 |
ps_matrix_norm = pp.normalize(ps_matrix, axis=1)
|
19 |
length_tid = len(list_tid)
|
|
|
26 |
|
27 |
def get_best_tid(current_list, ps_matrix_row, K=50, MAX_tid=10):
|
28 |
df_ps_train = pd.read_hdf('model/df_ps_train_new.hdf')
|
29 |
+
df_ps_train_extra = pd.read_hdf('model/df_ps_train_extra.hdf')
|
30 |
+
df_ps_train = pd.concat([df_ps_train,df_ps_train_extra])
|
31 |
+
|
32 |
sim_vector, sparse_row = inference_row(current_list, ps_matrix_row)
|
33 |
sim_vector = sim_vector.toarray()[0].tolist()
|
34 |
|
|
|
67 |
if (n == K):
|
68 |
break
|
69 |
|
70 |
+
df_ps_train_extra = add_row_train(df_ps_train_extra, current_list)
|
71 |
+
df_ps_train_extra.to_hdf('model/df_ps_train_extra.hdf', key='abc')
|
72 |
+
return new_list, sparse_row
|
73 |
|
74 |
|
75 |
def inference_from_tid(list_tid, K=50, MAX_tid=10):
|
|
|
78 |
|
79 |
with open(pickle_path, 'rb') as f:
|
80 |
ps_matrix = pickle.load(f)
|
81 |
+
|
82 |
+
with open("model/giantMatrix_extra.pickle",'rb') as f:
|
83 |
+
ps_matrix_extra = pickle.load(f)
|
84 |
+
|
85 |
+
ps_matrix = vstack((ps_matrix,ps_matrix_extra))
|
86 |
+
|
87 |
+
result, sparse_row = get_best_tid(list_tid, ps_matrix.tocsr(), K, MAX_tid)
|
88 |
+
ps_matrix_extra = vstack((ps_matrix_extra,sparse_row.todok()))
|
89 |
+
|
90 |
+
with open("model/giantMatrix_extra.pickle", 'wb') as f:
|
91 |
+
pickle.dump(ps_matrix_extra, f)
|
92 |
+
|
93 |
+
return result
|
94 |
|
95 |
|
96 |
def inference_from_uri(list_uri, K=50, MAX_tid=10):
|