Spaces:
Runtime error
Runtime error
import tensorflow as tf | |
from tensorflow import keras | |
from tensorflow.keras import layers | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
import gradio as gr | |
max_length = 55 | |
img_width = 240 | |
img_height = 50 | |
model = from_pretrained_keras("napatswift/ocr-vl", compile=False) | |
prediction_model = keras.models.Model( | |
model.get_layer(name="image").input, model.get_layer(name="dense2").output | |
) | |
vocab = [' ', '(', ')', '+', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', '=', '\xa0', 'ก', 'ข', 'ค', 'ฆ', 'ง', 'จ', 'ฉ', 'ช', 'ซ', 'ฌ', 'ญ', | |
'ฎ', 'ฏ', 'ฐ', 'ฑ', 'ฒ', 'ณ', 'ด', 'ต', 'ถ', 'ท', 'ธ', 'น', 'บ', 'ป', 'ผ', 'ฝ', 'พ', 'ฟ','ภ', 'ม', 'ย', 'ร', 'ฤ', 'ล', 'ฦ', 'ว', 'ศ', 'ษ', 'ส', 'ห', 'ฬ', 'อ', 'ฮ', | |
'ฯ', 'ะ', 'ั', 'า', 'ำ', 'ิ', 'ี', 'ึ', 'ื', 'ุ', 'ู', 'เ', 'แ', 'โ', 'ใ', 'ไ', 'ๅ', 'ๆ', '็', '่', '้', '๊', '๋', '์', '๐', '๑', '๒', '๓', '๔', '๕', '๖', '๗', '๘', '๙'] | |
# Mapping integers back to original characters | |
num_to_char = layers.StringLookup( | |
vocabulary=vocab, invert=True | |
) | |
def decode_batch_predictions(pred): | |
input_len = np.ones(pred.shape[0]) * pred.shape[1] | |
# Use greedy search. For complex tasks, you can use beam search | |
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][ | |
:, :max_length | |
] | |
# Iterate over the results and get back the text | |
output_text = [] | |
for res in results: | |
res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8") | |
output_text.append(res) | |
return output_text | |
def classify_image(img_path): | |
# 1. Read image | |
img = tf.io.read_file(img_path) | |
# 2. Decode and convert to grayscale | |
img = tf.io.decode_png(img, channels=1) | |
# 3. Convert to float32 in [0, 1] range | |
img = tf.image.convert_image_dtype(img, tf.float32) | |
# 4. Resize to the desired size | |
img = tf.image.resize_with_pad(img, img_height, img_width) | |
# 5. Transpose the image because we want the time | |
# dimension to correspond to the width of the image. | |
img = tf.transpose(img, perm=[1, 0, 2]) | |
img = tf.expand_dims(img, axis=0) | |
preds = prediction_model.predict(img) | |
pred_text = decode_batch_predictions(preds) | |
return pred_text[0] | |
image = gr.Image(type='filepath') | |
text = gr.Textbox() | |
iface = gr.Interface(classify_image, image, text, | |
title="OCR for CAPTCHA", | |
description = "Keras Implementation of OCR model for reading captcha 🤖🦹🏻", | |
article = "Author: <a href=\"https://huggingface.co/anuragshas\">Anurag Singh</a>. Based on the keras example from <a href=\"https://keras.io/examples/vision/captcha_ocr/\">A_K_Nain</a>", | |
examples = ["dd764.png","3p4nn.png"] | |
) | |
iface.launch() | |