File size: 6,108 Bytes
76a9232
 
448bd5e
 
5ca5e6d
 
 
 
 
76a9232
 
 
 
 
 
 
 
 
 
af8cfd6
 
76a9232
 
 
 
 
 
 
 
 
 
5ca5e6d
 
76a9232
 
 
 
 
 
 
5ca5e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a9232
 
 
 
f579b07
5ca5e6d
448bd5e
 
 
 
 
5ca5e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a9232
 
 
 
 
5ca5e6d
 
76a9232
f579b07
5ca5e6d
1b75c1f
f579b07
 
76a9232
5ca5e6d
 
 
76a9232
 
5ca5e6d
 
 
 
 
 
 
76a9232
 
 
 
5ca5e6d
 
76a9232
 
 
 
ce5070a
76a9232
 
5ca5e6d
 
 
 
76a9232
 
 
 
 
5ca5e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af8cfd6
 
5ca5e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a9232
8bb57b2
76a9232
5ca5e6d
 
 
 
 
76a9232
 
 
5ca5e6d
76a9232
8bb57b2
 
 
 
5ca5e6d
 
8bb57b2
76a9232
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import json
import random
import string
import sqlite3
from datetime import datetime, timezone
from fastapi import Query
from typing import List, Dict, Any
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
from apscheduler.schedulers.asyncio import AsyncIOScheduler
from huggingface_hub import AsyncInferenceClient

app = FastAPI()

# Configuration
models = [
    "meta-llama/Llama-3.1-8B-Instruct",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Meta-Llama-3-8B-Instruct",
    "meta-llama/Meta-Llama-3-70B-Instruct",
    "meta-llama/Llama-Guard-3-8B",
    "meta-llama/Llama-2-7b-chat-hf",
    "meta-llama/Llama-2-13b-chat-hf",
    "deepseek-ai/DeepSeek-Coder-V2-Instruct",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
]

LOG_FILE = "/data/api_logs.json"
DB_FILE = "/data/api_logs.db"
client = AsyncInferenceClient(token=os.environ["HF_INFERENCE_API_TOKEN"])

# Ensure log file exists
if not os.path.exists(LOG_FILE):
    with open(LOG_FILE, "w") as f:
        json.dump([], f)

# Initialize SQLite database
def init_db():
    conn = sqlite3.connect(DB_FILE)
    cursor = conn.cursor()
    cursor.execute('''
    CREATE TABLE IF NOT EXISTS api_logs (
        id INTEGER PRIMARY KEY AUTOINCREMENT,
        model TEXT,
        success BOOLEAN,
        timestamp TEXT,
        failure_message TEXT,
        response_data TEXT
    )
    ''')
    conn.commit()
    conn.close()

init_db()

class LogEntry(BaseModel):
    model: str
    success: bool
    timestamp: str
    failure_message: str
    response_data: Dict[str, Any] = None

def random_string(length=10):
    characters = string.ascii_letters + string.digits
    return ''.join(random.choice(characters) for _ in range(length))

def log_to_sqlite(entry: LogEntry):
    conn = sqlite3.connect(DB_FILE)
    cursor = conn.cursor()
    cursor.execute('''
    INSERT INTO api_logs (model, success, timestamp, failure_message, response_data)
    VALUES (?, ?, ?, ?, ?)
    ''', (
        entry.model,
        entry.success,
        entry.timestamp,
        entry.failure_message,
        json.dumps(entry.response_data) if entry.response_data else None
    ))
    conn.commit()
    conn.close()

async def check_apis():
    results = []
    for model in models:
        try:
            response = await client.chat_completion(
                messages=[{"role": "user", "content": f"{random_string()}\nWhat is the capital of France?"}],
                max_tokens=10,
            )
            success = True
            response_data = response
            e = 'success'
        except Exception as e:
            print(e)
            success = False
            response_data = None

        log_entry = LogEntry(
            model=model,
            success=success,
            timestamp=datetime.now(timezone.utc).isoformat(),
            failure_message=str(e) if not success else "",
            response_data=dict(response_data)
        )
        results.append(log_entry)
        log_to_sqlite(log_entry)

    with open(LOG_FILE, "r+") as f:
        logs = json.load(f)
        logs.extend([result.dict() for result in results])
        f.seek(0)
        f.truncate()
        json.dump(logs, f, indent=2)

@app.on_event("startup")
async def start_scheduler():
    scheduler = AsyncIOScheduler()
    scheduler.add_job(check_apis, 'interval', minutes=10)
    scheduler.start()

@app.get("/api/models")
async def get_models():
    return models

@app.get("/")
async def index():
    return FileResponse("static/index.html")

@app.get("/api/logs", response_model=List[LogEntry])
async def get_logs(
    model: str = Query(None, description="Filter by model name"),
    start: str = Query(None, description="Start time for filtering (ISO format)"),
    end: str = Query(None, description="End time for filtering (ISO format)")
):
    conn = sqlite3.connect(DB_FILE)
    cursor = conn.cursor()

    query = "SELECT * FROM api_logs"
    params = []

    if any([model, start, end]):
        query += " WHERE"

    if model:
        query += " AND model = ?"
        params.append(model)

    if start:
        query += " AND timestamp >= ?"
        params.append(start)

    if end:
        query += " AND timestamp <= ?"
        params.append(end)

    query += " ORDER BY timestamp DESC LIMIT 100"

    print(query, params)

    cursor.execute(query, params)
    logs = cursor.fetchall()
    conn.close()

    return [LogEntry(
        model=log[1],
        success=log[2],
        timestamp=log[3],
        failure_message=log[4],
        response_data=json.loads(log[5]) if log[5] else None
    ) for log in logs]

@app.get("/api/db-logs")
async def get_db_logs():
    conn = sqlite3.connect(DB_FILE)
    cursor = conn.cursor()
    cursor.execute("SELECT * FROM api_logs ORDER BY timestamp DESC LIMIT 100")
    logs = cursor.fetchall()
    conn.close()
    return [{"id": log[0], "model": log[1], "success": log[2], "timestamp": log[3], "failure_message": log[4], "response_data": json.loads(log[5]) if log[5] else None} for log in logs]

@app.get("/api/chart-data", response_model=Dict[str, Dict[str, Dict[str, List]]])
async def get_chart_data():
    conn = sqlite3.connect(DB_FILE)
    cursor = conn.cursor()
    cursor.execute("SELECT model, success, timestamp FROM api_logs ORDER BY timestamp")
    logs = cursor.fetchall()
    conn.close()
    
    chart_data = {}
    for log in logs:
        model, success, timestamp = log
        if model not in chart_data:
            chart_data[model] = {
                'success': {'x': [], 'y': []},
                'failure': {'x': [], 'y': []}
            }
        status = 'success' if success else 'failure'
        chart_data[model][status]['x'].append(timestamp)
        chart_data[model][status]['y'].append(1)
    
    return chart_data

# Mount the static files directory
app.mount("/static", StaticFiles(directory="static"), name="static")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)