Spaces:
Running
Running
File size: 6,108 Bytes
76a9232 448bd5e 5ca5e6d 76a9232 af8cfd6 76a9232 5ca5e6d 76a9232 5ca5e6d 76a9232 f579b07 5ca5e6d 448bd5e 5ca5e6d 76a9232 5ca5e6d 76a9232 f579b07 5ca5e6d 1b75c1f f579b07 76a9232 5ca5e6d 76a9232 5ca5e6d 76a9232 5ca5e6d 76a9232 ce5070a 76a9232 5ca5e6d 76a9232 5ca5e6d af8cfd6 5ca5e6d 76a9232 8bb57b2 76a9232 5ca5e6d 76a9232 5ca5e6d 76a9232 8bb57b2 5ca5e6d 8bb57b2 76a9232 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import json
import random
import string
import sqlite3
from datetime import datetime, timezone
from fastapi import Query
from typing import List, Dict, Any
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
from apscheduler.schedulers.asyncio import AsyncIOScheduler
from huggingface_hub import AsyncInferenceClient
app = FastAPI()
# Configuration
models = [
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-Guard-3-8B",
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-2-13b-chat-hf",
"deepseek-ai/DeepSeek-Coder-V2-Instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
]
LOG_FILE = "/data/api_logs.json"
DB_FILE = "/data/api_logs.db"
client = AsyncInferenceClient(token=os.environ["HF_INFERENCE_API_TOKEN"])
# Ensure log file exists
if not os.path.exists(LOG_FILE):
with open(LOG_FILE, "w") as f:
json.dump([], f)
# Initialize SQLite database
def init_db():
conn = sqlite3.connect(DB_FILE)
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS api_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model TEXT,
success BOOLEAN,
timestamp TEXT,
failure_message TEXT,
response_data TEXT
)
''')
conn.commit()
conn.close()
init_db()
class LogEntry(BaseModel):
model: str
success: bool
timestamp: str
failure_message: str
response_data: Dict[str, Any] = None
def random_string(length=10):
characters = string.ascii_letters + string.digits
return ''.join(random.choice(characters) for _ in range(length))
def log_to_sqlite(entry: LogEntry):
conn = sqlite3.connect(DB_FILE)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO api_logs (model, success, timestamp, failure_message, response_data)
VALUES (?, ?, ?, ?, ?)
''', (
entry.model,
entry.success,
entry.timestamp,
entry.failure_message,
json.dumps(entry.response_data) if entry.response_data else None
))
conn.commit()
conn.close()
async def check_apis():
results = []
for model in models:
try:
response = await client.chat_completion(
messages=[{"role": "user", "content": f"{random_string()}\nWhat is the capital of France?"}],
max_tokens=10,
)
success = True
response_data = response
e = 'success'
except Exception as e:
print(e)
success = False
response_data = None
log_entry = LogEntry(
model=model,
success=success,
timestamp=datetime.now(timezone.utc).isoformat(),
failure_message=str(e) if not success else "",
response_data=dict(response_data)
)
results.append(log_entry)
log_to_sqlite(log_entry)
with open(LOG_FILE, "r+") as f:
logs = json.load(f)
logs.extend([result.dict() for result in results])
f.seek(0)
f.truncate()
json.dump(logs, f, indent=2)
@app.on_event("startup")
async def start_scheduler():
scheduler = AsyncIOScheduler()
scheduler.add_job(check_apis, 'interval', minutes=10)
scheduler.start()
@app.get("/api/models")
async def get_models():
return models
@app.get("/")
async def index():
return FileResponse("static/index.html")
@app.get("/api/logs", response_model=List[LogEntry])
async def get_logs(
model: str = Query(None, description="Filter by model name"),
start: str = Query(None, description="Start time for filtering (ISO format)"),
end: str = Query(None, description="End time for filtering (ISO format)")
):
conn = sqlite3.connect(DB_FILE)
cursor = conn.cursor()
query = "SELECT * FROM api_logs"
params = []
if any([model, start, end]):
query += " WHERE"
if model:
query += " AND model = ?"
params.append(model)
if start:
query += " AND timestamp >= ?"
params.append(start)
if end:
query += " AND timestamp <= ?"
params.append(end)
query += " ORDER BY timestamp DESC LIMIT 100"
print(query, params)
cursor.execute(query, params)
logs = cursor.fetchall()
conn.close()
return [LogEntry(
model=log[1],
success=log[2],
timestamp=log[3],
failure_message=log[4],
response_data=json.loads(log[5]) if log[5] else None
) for log in logs]
@app.get("/api/db-logs")
async def get_db_logs():
conn = sqlite3.connect(DB_FILE)
cursor = conn.cursor()
cursor.execute("SELECT * FROM api_logs ORDER BY timestamp DESC LIMIT 100")
logs = cursor.fetchall()
conn.close()
return [{"id": log[0], "model": log[1], "success": log[2], "timestamp": log[3], "failure_message": log[4], "response_data": json.loads(log[5]) if log[5] else None} for log in logs]
@app.get("/api/chart-data", response_model=Dict[str, Dict[str, Dict[str, List]]])
async def get_chart_data():
conn = sqlite3.connect(DB_FILE)
cursor = conn.cursor()
cursor.execute("SELECT model, success, timestamp FROM api_logs ORDER BY timestamp")
logs = cursor.fetchall()
conn.close()
chart_data = {}
for log in logs:
model, success, timestamp = log
if model not in chart_data:
chart_data[model] = {
'success': {'x': [], 'y': []},
'failure': {'x': [], 'y': []}
}
status = 'success' if success else 'failure'
chart_data[model][status]['x'].append(timestamp)
chart_data[model][status]['y'].append(1)
return chart_data
# Mount the static files directory
app.mount("/static", StaticFiles(directory="static"), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |