restaurant-ces / pages /01_debug.py
ndiy's picture
add application file
d08bb4e
raw
history blame
1.59 kB
import streamlit as st
from streamlit.logger import get_logger
import pandas as pd
from transformers import pipeline
from setfit import AbsaModel
import translators as ts
from config import base_model, senti_map, absa_model, senti_color
from annotated_text import annotated_text
LOGGER = get_logger(__name__)
#ts.preaccelerate_and_speedtest()
senti_task = pipeline("sentiment-analysis", model=base_model, tokenizer=base_model)
absa = AbsaModel.from_pretrained(absa_model[0], absa_model[1])
def run():
st.write('Copy and paste comment into below text box.')
txt = st.text_area('customer review')
if len(txt.strip()) > 0:
lang = st.selectbox('pick output language', ['en', 'hi', 'zh'], index=0)
with st.spinner(f'translate to {lang}'):
txt_en = ts.translate_text(txt, to_language=lang, translator='google')
with st.spinner('working on comment sentiment, please wait...'):
sentiment = senti_task(txt_en)
st.write(f"it's {senti_map[sentiment[0]['label']]} feedback with a confidence of {sentiment[0]['score']:.1%}")
with st.spinner('detecting aspect sentiment...'):
preds = absa(txt_en)
st.write(f"the comment talks about: {','.join([t['span'] for t in preds])}, detailed sentiments as follow:")
#st.write(f'Customer says: {txt_en}')
preds = {p['span']: p['polarity'] for p in preds}
annotated_text(
[(t + ' ', preds[t], senti_color[preds[t]]) if t in preds else t+' ' for t in txt_en.split(' ')]
)
if __name__ == "__main__":
run()