File size: 10,349 Bytes
5f80bb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import logging
from typing import Any, Dict, Iterator, List, Optional

from pydantic import Field, root_validator

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.schema.output import GenerationChunk

logger = logging.getLogger(__name__)


class LlamaCpp(LLM):
    """llama.cpp model.

    To use, you should have the llama-cpp-python library installed, and provide the
    path to the Llama model as a named parameter to the constructor.
    Check out: https://github.com/abetlen/llama-cpp-python

    Example:
        .. code-block:: python

            from langchain.llms import LlamaCpp
            llm = LlamaCpp(model_path="/path/to/llama/model")
    """

    client: Any  #: :meta private:
    model_path: str
    """The path to the Llama model file."""

    lora_base: Optional[str] = None
    """The path to the Llama LoRA base model."""

    lora_path: Optional[str] = None
    """The path to the Llama LoRA. If None, no LoRa is loaded."""

    n_ctx: int = Field(512, alias="n_ctx")
    """Token context window."""

    n_parts: int = Field(-1, alias="n_parts")
    """Number of parts to split the model into.
    If -1, the number of parts is automatically determined."""

    seed: int = Field(-1, alias="seed")
    """Seed. If -1, a random seed is used."""

    f16_kv: bool = Field(True, alias="f16_kv")
    """Use half-precision for key/value cache."""

    logits_all: bool = Field(False, alias="logits_all")
    """Return logits for all tokens, not just the last token."""

    vocab_only: bool = Field(False, alias="vocab_only")
    """Only load the vocabulary, no weights."""

    use_mlock: bool = Field(False, alias="use_mlock")
    """Force system to keep model in RAM."""

    n_threads: Optional[int] = Field(None, alias="n_threads")
    """Number of threads to use.
    If None, the number of threads is automatically determined."""

    n_batch: Optional[int] = Field(8, alias="n_batch")
    """Number of tokens to process in parallel.
    Should be a number between 1 and n_ctx."""

    n_gpu_layers: Optional[int] = Field(None, alias="n_gpu_layers")
    """Number of layers to be loaded into gpu memory. Default None."""

    suffix: Optional[str] = Field(None)
    """A suffix to append to the generated text. If None, no suffix is appended."""

    max_tokens: Optional[int] = 256
    """The maximum number of tokens to generate."""

    temperature: Optional[float] = 0.8
    """The temperature to use for sampling."""

    top_p: Optional[float] = 0.95
    """The top-p value to use for sampling."""

    logprobs: Optional[int] = Field(None)
    """The number of logprobs to return. If None, no logprobs are returned."""

    echo: Optional[bool] = False
    """Whether to echo the prompt."""

    stop: Optional[List[str]] = []
    """A list of strings to stop generation when encountered."""

    repeat_penalty: Optional[float] = 1.1
    """The penalty to apply to repeated tokens."""

    top_k: Optional[int] = 40
    """The top-k value to use for sampling."""

    last_n_tokens_size: Optional[int] = 64
    """The number of tokens to look back when applying the repeat_penalty."""

    use_mmap: Optional[bool] = True
    """Whether to keep the model loaded in RAM"""

    rope_freq_scale: float = 1.0
    """Scale factor for rope sampling."""

    rope_freq_base: float = 10000.0
    """Base frequency for rope sampling."""

    streaming: bool = True
    """Whether to stream the results, token by token."""

    verbose: bool = True
    """Print verbose output to stderr."""

    n_gqa: Optional[int] = None

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that llama-cpp-python library is installed."""

        
        model_path = values["model_path"]
        model_param_names = [
            "n_gqa",
            "rope_freq_scale",
            "rope_freq_base",
            "lora_path",
            "lora_base",
            "n_ctx",
            "n_parts",
            "seed",
            "f16_kv",
            "logits_all",
            "vocab_only",
            "use_mlock",
            "n_threads",
            "n_batch",
            "use_mmap",
            "last_n_tokens_size",
            "verbose",
        ]
        model_params = {k: values[k] for k in model_param_names}

        model_params['n_gqa'] = 8 if '70B' in model_path.upper() else None # (TEMPORARY) must be 8 for llama2 70b
        # For backwards compatibility, only include if non-null.
        if values["n_gpu_layers"] is not None:
            model_params["n_gpu_layers"] = values["n_gpu_layers"]

        try:
            from llama_cpp import Llama

            values["client"] = Llama(model_path, **model_params)
        except ImportError:
            raise ImportError(
                "Could not import llama-cpp-python library. "
                "Please install the llama-cpp-python library to "
                "use this embedding model: pip install llama-cpp-python"
            )
        except Exception as e:
            raise ValueError(
                f"Could not load Llama model from path: {model_path}. "
                f"Received error {e}"
            )

        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling llama_cpp."""
        return {
            "suffix": self.suffix,
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "logprobs": self.logprobs,
            "echo": self.echo,
            "stop_sequences": self.stop,  # key here is convention among LLM classes
            "repeat_penalty": self.repeat_penalty,
            "top_k": self.top_k,
        }

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Get the identifying parameters."""
        return {**{"model_path": self.model_path}, **self._default_params}

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "llamacpp"

    def _get_parameters(self, stop: Optional[List[str]] = None) -> Dict[str, Any]:
        """
        Performs sanity check, preparing parameters in format needed by llama_cpp.

        Args:
            stop (Optional[List[str]]): List of stop sequences for llama_cpp.

        Returns:
            Dictionary containing the combined parameters.
        """

        # Raise error if stop sequences are in both input and default params
        if self.stop and stop is not None:
            raise ValueError("`stop` found in both the input and default params.")

        params = self._default_params

        # llama_cpp expects the "stop" key not this, so we remove it:
        params.pop("stop_sequences")

        # then sets it as configured, or default to an empty list:
        params["stop"] = self.stop or stop or []

        return params

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        """Call the Llama model and return the output.

        Args:
            prompt: The prompt to use for generation.
            stop: A list of strings to stop generation when encountered.

        Returns:
            The generated text.

        Example:
            .. code-block:: python

                from langchain.llms import LlamaCpp
                llm = LlamaCpp(model_path="/path/to/local/llama/model.bin")
                llm("This is a prompt.")
        """
        if self.streaming:
            # If streaming is enabled, we use the stream
            # method that yields as they are generated
            # and return the combined strings from the first choices's text:
            combined_text_output = ""
            for chunk in self._stream(
                prompt=prompt, stop=stop, run_manager=run_manager, **kwargs
            ):
                combined_text_output += chunk.text
            return combined_text_output
        else:
            params = self._get_parameters(stop)
            params = {**params, **kwargs}
            result = self.client(prompt=prompt, **params)
            return result["choices"][0]["text"]

    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        """Yields results objects as they are generated in real time.

        It also calls the callback manager's on_llm_new_token event with
        similar parameters to the OpenAI LLM class method of the same name.

        Args:
            prompt: The prompts to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            A generator representing the stream of tokens being generated.

        Yields:
            A dictionary like objects containing a string token and metadata.
            See llama-cpp-python docs and below for more.

        Example:
            .. code-block:: python

                from langchain.llms import LlamaCpp
                llm = LlamaCpp(
                    model_path="/path/to/local/model.bin",
                    temperature = 0.5
                )
                for chunk in llm.stream("Ask 'Hi, how are you?' like a pirate:'",
                        stop=["'","\n"]):
                    result = chunk["choices"][0]
                    print(result["text"], end='', flush=True)

        """
        params = {**self._get_parameters(stop), **kwargs}
        result = self.client(prompt=prompt, stream=True, **params)
        for part in result:
            logprobs = part["choices"][0].get("logprobs", None)
            chunk = GenerationChunk(
                text=part["choices"][0]["text"],
                generation_info={"logprobs": logprobs},
            )
            yield chunk
            if run_manager:
                run_manager.on_llm_new_token(
                    token=chunk.text, verbose=self.verbose, log_probs=logprobs
                )

    def get_num_tokens(self, text: str) -> int:
        tokenized_text = self.client.tokenize(text.encode("utf-8"))
        return len(tokenized_text)