|
|
|
|
|
|
|
import gradio as gr |
|
from transformers import pipeline |
|
import torch |
|
import threading |
|
import time |
|
import tensorflow as tf |
|
|
|
|
|
print(torch.cuda.is_available()) |
|
print(tf.test.gpu_device_name()) |
|
|
|
|
|
pipe = pipeline("text-generation", model="chargoddard/Yi-34B-Llama", device=0) |
|
|
|
|
|
rate_limit = 5 |
|
last_request_time = 0 |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
global last_request_time |
|
|
|
|
|
elapsed_time = time.time() - last_request_time |
|
if elapsed_time < 1.0 / rate_limit: |
|
time.sleep(1.0 / rate_limit - elapsed_time) |
|
|
|
last_request_time = time.time() |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
|
|
result = pipe( |
|
messages[-1]["content"], |
|
max_length=max_tokens, |
|
num_return_sequences=1, |
|
temperature=temperature, |
|
top_p=top_p, |
|
) |
|
|
|
response = result[0]['generated_text'] |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
demo.launch() |