yuhhsss / app.py
ndwdgda's picture
Update app.py
29d0869 verified
raw
history blame
2.05 kB
# Import required libraries
import gradio as gr
from transformers import pipeline
import torch
import threading
import time
import tensorflow as tf
# Check GPU availability
print(torch.cuda.is_available())
print(tf.test.gpu_device_name())
# Initialize the text generation pipeline with the specified model
pipe = pipeline("text-generation", model="chargoddard/Yi-34B-Llama", device=0)
# Rate limiting parameters
rate_limit = 5 # Number of requests per second
last_request_time = 0
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
global last_request_time
# Apply rate limiting
elapsed_time = time.time() - last_request_time
if elapsed_time < 1.0 / rate_limit:
time.sleep(1.0 / rate_limit - elapsed_time)
last_request_time = time.time()
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
# Generate the response using the pipeline
result = pipe(
messages[-1]["content"],
max_length=max_tokens,
num_return_sequences=1,
temperature=temperature,
top_p=top_p,
)
response = result[0]['generated_text']
yield response
# Gradio interface setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the Gradio interface
demo.launch()