Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import hf_hub_download
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
from dateutil.utils import today
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
model_path = hf_hub_download(repo_id="MaxJalo/CardioAI", filename="cardioai_model.keras")
|
10 |
+
model = tf.keras.models.load_model(model_path)
|
11 |
+
|
12 |
+
heart = load_dataset("MaxJalo/CardioAI", split = 'train')
|
13 |
+
data = pd.DataFrame(heart, columns=["age","gender","height","weight","ap_hi","ap_lo","cholesterol","gluc","smoke","alco","active",'cardio'])
|
14 |
+
X_for_train = data.drop(['cardio'], axis=1).values
|
15 |
+
X_min = np.min(X_for_train, axis=0)
|
16 |
+
X_max = np.max(X_for_train, axis=0)
|
17 |
+
|
18 |
+
def webai(user_input):
|
19 |
+
user_input_clear = user_input
|
20 |
+
input_data = [user_input_clear]
|
21 |
+
input_data_scaled = (input_data - X_min) / (X_max - X_min)
|
22 |
+
|
23 |
+
# Получаем предсказание от модели
|
24 |
+
predicted_result_scaled = model.predict(input_data_scaled)
|
25 |
+
otv = round(predicted_result_scaled[0][0] * 100, 2)
|
26 |
+
if otv < 0:
|
27 |
+
otv = 0
|
28 |
+
elif otv > 100:
|
29 |
+
otv = 100
|
30 |
+
chans = ''
|
31 |
+
if otv >=0 and otv < 30:
|
32 |
+
chans = "Низкий"
|
33 |
+
elif otv >=30 and otv <50:
|
34 |
+
chans = "Средний"
|
35 |
+
elif otv >=50 and otv <70:
|
36 |
+
chans = "Высокий, обратитесь к кардиологу"
|
37 |
+
else:
|
38 |
+
chans = "Крайне высокий, обязательно обратитесь к кардиологу"
|
39 |
+
|
40 |
+
return f'Вероятность заболевания: {otv}. Шанс вашего заболевания: ' + chans
|
41 |
+
|
42 |
+
|
43 |
+
def pomoch(age, gender, height, weight, ap_hi, ap_lo, cholesterol, gluc, smoke, alco, active):
|
44 |
+
try:
|
45 |
+
X = [int(age), gender, int(height), int(weight), int(ap_hi), int(ap_lo), float(cholesterol), float(gluc), smoke,
|
46 |
+
alco, active]
|
47 |
+
X[0] = today().year - X[0]
|
48 |
+
if X[1] == "Мужской":
|
49 |
+
X[1] = 0
|
50 |
+
else:
|
51 |
+
X[1] = 1
|
52 |
+
for i in range(8, 11):
|
53 |
+
if X[i] == "Да":
|
54 |
+
X[i] = 1
|
55 |
+
else:
|
56 |
+
X[i] = 0
|
57 |
+
if X[6] <= 5:
|
58 |
+
X[6] = 1
|
59 |
+
else:
|
60 |
+
if X[6] >= 7.8:
|
61 |
+
X[6] = 3
|
62 |
+
else:
|
63 |
+
X[6] = 2
|
64 |
+
|
65 |
+
if X[7] <= 5.5 and X[7] >= 3.3:
|
66 |
+
X[7] = 1
|
67 |
+
else:
|
68 |
+
if (X[7] > 5.5 and X[7] < 11) or X[7] < 3.3:
|
69 |
+
X[7] = 2
|
70 |
+
else:
|
71 |
+
X[7] = 3
|
72 |
+
return webai(X)
|
73 |
+
except ValueError:
|
74 |
+
return "Пожалуйста, убедитесь, что все значения числовые."
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
demo = gr.Interface(
|
79 |
+
pomoch,
|
80 |
+
[
|
81 |
+
gr.Slider(1900, 2010, value=1990, step=1, label="Год рождения"),
|
82 |
+
gr.Radio(["Мужской", "Женский"], label="Пол", ),
|
83 |
+
gr.Textbox(label="Рост(см)"),
|
84 |
+
gr.Textbox(label="Вес(кг)"),
|
85 |
+
gr.Textbox(label="Верхнее Давление"),
|
86 |
+
gr.Textbox(label="Нижнее Давление"),
|
87 |
+
gr.Textbox(label="Холестерин(ммоль/л)"),
|
88 |
+
gr.Textbox(label="Глюкоза(ммоль/л)", ),
|
89 |
+
gr.Radio(["Да", "Нет"], label="Курение", ),
|
90 |
+
gr.Radio(["Да", "Нет"], label="Алкоголь", ),
|
91 |
+
gr.Radio(["Да", "Нет"], label="Активность", ),
|
92 |
+
],
|
93 |
+
'text')
|
94 |
+
|
95 |
+
demo.launch()
|