Spaces:
Running
Running
pengdaqian
commited on
Commit
·
badc295
1
Parent(s):
83c3831
warm up model
Browse files- Dockerfile +3 -0
- img_nsfw.py +11 -10
Dockerfile
CHANGED
@@ -3,6 +3,9 @@ FROM python:3.8
|
|
3 |
COPY requirements.txt requirements.txt
|
4 |
RUN pip3 install -r requirements.txt
|
5 |
|
|
|
|
|
|
|
6 |
WORKDIR $HOME/app
|
7 |
|
8 |
COPY . $HOME/app
|
|
|
3 |
COPY requirements.txt requirements.txt
|
4 |
RUN pip3 install -r requirements.txt
|
5 |
|
6 |
+
ENV TRANSFORMERS_CACHE /var/cache/transformers
|
7 |
+
RUN transformers-cli download CompVis/stable-diffusion-v1-4
|
8 |
+
|
9 |
WORKDIR $HOME/app
|
10 |
|
11 |
COPY . $HOME/app
|
img_nsfw.py
CHANGED
@@ -11,12 +11,13 @@ def init_nsfw_pipe():
|
|
11 |
from torch import nn
|
12 |
|
13 |
# make sure you're logged in with `huggingface-cli login`
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
def cosine_distance(image_embeds, text_embeds):
|
22 |
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
@@ -78,10 +79,10 @@ def check_nsfw(img, pipe):
|
|
78 |
if isinstance(img, str):
|
79 |
img = dbimutils.read_img_from_url(img)
|
80 |
safety_checker_input = pipe.feature_extractor(images=img, return_tensors="pt")
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
|
86 |
from torch.cuda.amp import autocast
|
87 |
with autocast():
|
|
|
11 |
from torch import nn
|
12 |
|
13 |
# make sure you're logged in with `huggingface-cli login`
|
14 |
+
if torch.cuda.is_available():
|
15 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16",
|
16 |
+
torch_dtype=torch.float16)
|
17 |
+
pipe = pipe.to('cuda')
|
18 |
+
else:
|
19 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4",
|
20 |
+
torch_dtype=torch.float32)
|
21 |
|
22 |
def cosine_distance(image_embeds, text_embeds):
|
23 |
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
|
|
79 |
if isinstance(img, str):
|
80 |
img = dbimutils.read_img_from_url(img)
|
81 |
safety_checker_input = pipe.feature_extractor(images=img, return_tensors="pt")
|
82 |
+
if torch.cuda.is_available():
|
83 |
+
safety_checker_input = safety_checker_input.to('cuda')
|
84 |
+
else:
|
85 |
+
safety_checker_input = safety_checker_input.to('cpu')
|
86 |
|
87 |
from torch.cuda.amp import autocast
|
88 |
with autocast():
|