Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -673,7 +673,7 @@ from underthesea import word_tokenize
|
|
673 |
from nltk.tokenize import word_tokenize as word_tokenize_en
|
674 |
from numpy import zeros,zeros_like
|
675 |
from scipy.spatial.distance import cosine
|
676 |
-
|
677 |
async def validate_similarity(request):
|
678 |
req = await request.json()
|
679 |
sent1, sent2 = req['sentences']
|
@@ -699,8 +699,14 @@ async def validate_similarity(request):
|
|
699 |
vect2 += w2v_vi.get_vector(t)
|
700 |
|
701 |
# Calculate similarity using cosine similarity: This metric measures the cosine of the angle between two embedding vectors. A higher cosine similarity indicates more similar sentences.
|
702 |
-
|
703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
|
705 |
async def get_cached_img_from_disk(request):
|
706 |
_fn = request.path_params['fn']
|
|
|
673 |
from nltk.tokenize import word_tokenize as word_tokenize_en
|
674 |
from numpy import zeros,zeros_like
|
675 |
from scipy.spatial.distance import cosine
|
676 |
+
import warnings
|
677 |
async def validate_similarity(request):
|
678 |
req = await request.json()
|
679 |
sent1, sent2 = req['sentences']
|
|
|
699 |
vect2 += w2v_vi.get_vector(t)
|
700 |
|
701 |
# Calculate similarity using cosine similarity: This metric measures the cosine of the angle between two embedding vectors. A higher cosine similarity indicates more similar sentences.
|
702 |
+
with warnings.catch_warnings():
|
703 |
+
warnings.simplefilter('error', RuntimeWarning)
|
704 |
+
try:
|
705 |
+
sim = 1 - cosine(vect1, vect2) >= 0.8
|
706 |
+
except RuntimeWarning as e:
|
707 |
+
return JSONResponse({"isSimilar": "False"})
|
708 |
+
|
709 |
+
return JSONResponse({"isSimilar": str(sim)})
|
710 |
|
711 |
async def get_cached_img_from_disk(request):
|
712 |
_fn = request.path_params['fn']
|