|
import time |
|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_id = "nicholasKluge/Aira-Instruct-PT-124" |
|
token = "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" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
if device == "cuda": |
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token, load_in_8bit=True) |
|
|
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) |
|
model.to(device) |
|
|
|
intro = """ |
|
## What is `Aira`? |
|
|
|
[`Aira`](https://github.com/Nkluge-correa/Aira-EXPERT) is a `chatbot` designed to simulate the way a human (expert) would behave during a round of questions and answers (Q&A). `Aira` has many iterations, from a closed-domain chatbot based on pre-defined rules to an open-domain chatbot achieved via fine-tuning pre-trained large language models. Aira has an area of expertise that comprises topics related to AI Ethics and AI Safety research. |
|
|
|
We developed our open-domain conversational chatbots via conditional text generation/instruction fine-tuning. This approach has a lot of limitations. Even though we can make a chatbot that can answer questions about anything, forcing the model to produce good-quality responses is hard. And by good, we mean **factual** and **nontoxic** text. This leads us to two of the most common problems of generative models used in conversational applications: |
|
|
|
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful. |
|
|
|
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes against sensitive attributes (for example, gender, race, and religion). |
|
|
|
`Aira` is intended only for academic research. For more information, visit our [HuggingFace models](https://huggingface.co/nicholasKluge) to see how we developed `Aira`. |
|
""" |
|
|
|
disclaimer = """ |
|
**Disclaimer:** You should use this demo for research purposes only. Moderators do not censor the model output, and the authors do not endorse the opinions generated by this model. |
|
|
|
If you would like to complain about any message produced by `Aira`, please contact [[email protected]](mailto:[email protected]). |
|
""" |
|
|
|
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo: |
|
|
|
gr.Markdown("""<h1><center>Aira Demo 🤓💬</h1></center>""") |
|
gr.Markdown(intro) |
|
|
|
chatbot = gr.Chatbot(label="Aira").style(height=500) |
|
|
|
with gr.Accordion(label="Parameters ⚙️", open=False): |
|
top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",) |
|
top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",) |
|
temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperature",) |
|
max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Max Length",) |
|
|
|
msg = gr.Textbox(label="Write a question or comment to Aira ...", placeholder="Hi Aira, how are you?") |
|
|
|
clear = gr.Button("Clear Conversation 🧹") |
|
gr.Markdown(disclaimer) |
|
|
|
def user(user_message, chat_history): |
|
return gr.update(value=user_message, interactive=True), chat_history + [["👤 " + user_message, None]] |
|
|
|
def generate_response(user_msg, top_p, temperature, top_k, max_length, chat_history): |
|
|
|
inputs = tokenizer(tokenizer.bos_token + user_msg + tokenizer.eos_token, return_tensors="pt").to(device) |
|
|
|
generated_response = model.generate(**inputs, |
|
bos_token_id=tokenizer.bos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
early_stopping=True, |
|
top_k=top_k, |
|
max_length=max_length, |
|
top_p=top_p, |
|
temperature=temperature, |
|
num_return_sequences=1) |
|
|
|
bot_message = tokenizer.decode(generated_response[0], skip_special_tokens=True).replace(user_msg, "") |
|
|
|
chat_history[-1][1] = "🤖 " |
|
for character in bot_message: |
|
chat_history[-1][1] += character |
|
time.sleep(0.005) |
|
yield chat_history |
|
|
|
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
generate_response, [msg, top_p, temperature, top_k, max_length, chatbot], chatbot |
|
) |
|
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False) |
|
msg.submit(lambda x: gr.update(value=''), [],[msg]) |
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.queue() |
|
demo.launch() |