nicholasKluge
commited on
Commit
·
6d5dc5a
1
Parent(s):
b6b0c34
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import
|
2 |
import gradio as gr
|
3 |
|
4 |
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-PT-560M',
|
@@ -8,12 +8,19 @@ model = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-PT-560
|
|
8 |
|
9 |
import gradio as gr
|
10 |
|
11 |
-
with gr.Blocks() as demo:
|
12 |
-
chatbot = gr.Chatbot()
|
13 |
-
msg = gr.Textbox()
|
14 |
-
clear = gr.Button("Clear Conversation")
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
inputs = tokenizer(tokenizer.bos_token + message + tokenizer.eos_token, return_tensors="pt")
|
18 |
|
19 |
response = model.generate(**inputs,
|
@@ -22,17 +29,17 @@ with gr.Blocks() as demo:
|
|
22 |
eos_token_id=tokenizer.eos_token_id,
|
23 |
do_sample=True,
|
24 |
early_stopping=True,
|
25 |
-
top_k=
|
26 |
-
max_length=
|
27 |
-
top_p=
|
28 |
-
temperature=
|
29 |
num_return_sequences=1)
|
30 |
|
31 |
chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}"""))
|
32 |
|
33 |
return "", chat_history
|
34 |
-
|
35 |
-
msg.submit(
|
36 |
clear.click(lambda: None, None, chatbot, queue=False)
|
37 |
|
38 |
demo.launch()
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import gradio as gr
|
3 |
|
4 |
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-PT-560M',
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
with gr.Blocks() as demo:
|
13 |
+
gr.Markdown("""<h1><center>🔥Aira-PT Demo🤓🚀</h1></center>""")
|
14 |
+
chatbot = gr.Chatbot(label="Aira")
|
15 |
+
msg = gr.Textbox(label="Write a question or comment to Aira", placeholder="Hi Aira, how are you?")
|
16 |
+
with gr.Accordion("Parameters ⚙️", open=True):
|
17 |
+
top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",)
|
18 |
+
top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",)
|
19 |
+
temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.5, step=0.1, interactive=True, label="Temperature",)
|
20 |
+
max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Max Length",)
|
21 |
+
clear = gr.Button("Clear Conversation 🧹")
|
22 |
+
|
23 |
+
def generate_response(message, chat_history, top_k, top_p, temperature, max_length):
|
24 |
inputs = tokenizer(tokenizer.bos_token + message + tokenizer.eos_token, return_tensors="pt")
|
25 |
|
26 |
response = model.generate(**inputs,
|
|
|
29 |
eos_token_id=tokenizer.eos_token_id,
|
30 |
do_sample=True,
|
31 |
early_stopping=True,
|
32 |
+
top_k=top_k,
|
33 |
+
max_length=max_length,
|
34 |
+
top_p=top_p,
|
35 |
+
temperature=temperature,
|
36 |
num_return_sequences=1)
|
37 |
|
38 |
chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}"""))
|
39 |
|
40 |
return "", chat_history
|
41 |
+
|
42 |
+
msg.submit(generate_response, [msg, chatbot, top_k, top_p, temperature, max_length], [msg, chatbot])
|
43 |
clear.click(lambda: None, None, chatbot, queue=False)
|
44 |
|
45 |
demo.launch()
|