nicholasKluge
commited on
Commit
·
7e63de2
1
Parent(s):
3f72719
Update app.py
Browse files
app.py
CHANGED
@@ -178,36 +178,37 @@ with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
|
|
178 |
decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response]
|
179 |
|
180 |
rewards = list()
|
181 |
-
|
|
|
|
|
182 |
|
183 |
for text in decoded_text:
|
184 |
-
|
185 |
-
truncation=True,
|
186 |
-
max_length=512,
|
187 |
-
return_token_type_ids=False,
|
188 |
-
return_tensors="pt",
|
189 |
-
return_attention_mask=True)
|
190 |
-
|
191 |
-
reward_tokens.to(rewardModel.device)
|
192 |
-
|
193 |
-
reward = rewardModel(**reward_tokens)[0].item()
|
194 |
-
|
195 |
-
toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
|
196 |
truncation=True,
|
197 |
max_length=512,
|
198 |
return_token_type_ids=False,
|
199 |
return_tensors="pt",
|
200 |
return_attention_mask=True)
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
toxicity_threshold = 5
|
210 |
-
|
211 |
ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
|
212 |
|
213 |
if safety == "On":
|
|
|
178 |
decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response]
|
179 |
|
180 |
rewards = list()
|
181 |
+
|
182 |
+
if safety == "On":
|
183 |
+
toxicities = list()
|
184 |
|
185 |
for text in decoded_text:
|
186 |
+
reward_tokens = rewardTokenizer(user_msg, text,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
truncation=True,
|
188 |
max_length=512,
|
189 |
return_token_type_ids=False,
|
190 |
return_tensors="pt",
|
191 |
return_attention_mask=True)
|
192 |
+
|
193 |
+
reward_tokens.to(rewardModel.device)
|
194 |
+
|
195 |
+
reward = rewardModel(**reward_tokens)[0].item()
|
196 |
+
rewards.append(reward)
|
197 |
+
|
198 |
+
if safety == "On":
|
199 |
+
toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
|
200 |
+
truncation=True,
|
201 |
+
max_length=512,
|
202 |
+
return_token_type_ids=False,
|
203 |
+
return_tensors="pt",
|
204 |
+
return_attention_mask=True)
|
205 |
+
|
206 |
+
toxicity_tokens.to(toxicityModel.device)
|
207 |
+
|
208 |
+
toxicity = toxicityModel(**toxicity_tokens)[0].item()
|
209 |
+
toxicities.append(toxicity)
|
210 |
+
toxicity_threshold = 5
|
211 |
|
|
|
|
|
212 |
ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
|
213 |
|
214 |
if safety == "On":
|