nicholasKluge commited on
Commit
c560ff9
·
1 Parent(s): 725ab41

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -30,7 +30,7 @@ toxiciyTokenizer = AutoTokenizer.from_pretrained(toxicitymodel_id, use_auth_toke
30
  intro = """
31
  ## O que é `Aira`?
32
 
33
- [`Aira`](https://github.com/Nkluge-correa/Aira-EXPERT) é um `chatbot` projetado para simular a forma como um humano (especialista) se comportaria durante uma rodada de perguntas e respostas (Q&A). `Aira` tem muitas iterações, desde um chatbot de domínio fechado baseado em regras pré-definidas até um chatbot de domínio aberto atingido através do ajuste fino de grandes modelos de linguagem pré-treinados. `Aira` tem uma área de especialização que inclui tópicos relacionados com a ética da IA e a investigação sobre segurança da IA.
34
 
35
  Desenvolvemos os nossos chatbots de conversação de domínio aberto através da geração de texto condicional/ajuste fino por instruções. Esta abordagem tem muitas limitações. Apesar de podermos criar um chatbot capaz de responder a perguntas sobre qualquer assunto, é difícil forçar o modelo a produzir respostas de boa qualidade. E por boa, queremos dizer texto **factual** e **não tóxico**. Isto leva-nos a dois dos problemas mais comuns quando lidando com modelos generativos utilizados em aplicações de conversação:
36
 
@@ -42,11 +42,11 @@ Desenvolvemos os nossos chatbots de conversação de domínio aberto através da
42
 
43
  ## Uso Intendido
44
 
45
- `Aira` destina-se apenas à investigação académica. Para mais informações, visite o nosso [HuggingFace models](https://huggingface.co/nicholasKluge) para ver como desenvolvemos `Aira`.
46
 
47
  ## Como essa demo funciona?
48
 
49
- Esta demonstração utiliza um [`modelo de recompensa`](https://huggingface.co/nicholasKluge/RewardModel) e um [`modelo de toxicidade`](https://huggingface.co/nicholasKluge/ToxicityModel) para avaliar a pontuação de cada resposta candidata, considerando o seu alinhamento com a mensagem do utilizador e o seu nível de toxicidade. A função de geração organiza as respostas candidatas por ordem da sua pontuação de recompensa e elimina as respostas consideradas tóxicas ou nocivas. Posteriormente, a função de geração devolve a resposta candidata com a pontuação mais elevada que ultrapassa o limiar de segurança, ou uma mensagem pré-estabelecida se não forem identificados candidatos seguros.
50
  """
51
 
52
  disclaimer = """
 
30
  intro = """
31
  ## O que é `Aira`?
32
 
33
+ [`Aira`](https://github.com/Nkluge-correa/Aira-EXPERT) é um `chatbot` projetado para simular a forma como um humano (especialista) se comportaria durante uma rodada de perguntas e respostas (Q&A). `Aira` tem muitas iterações, desde um chatbot de domínio fechado baseado em regras pré-definidas até um chatbot de domínio aberto atingido através do ajuste fino por instruções. `Aira` tem uma área de especialização que inclui tópicos relacionados com a ética da IA e a investigação sobre segurança da IA.
34
 
35
  Desenvolvemos os nossos chatbots de conversação de domínio aberto através da geração de texto condicional/ajuste fino por instruções. Esta abordagem tem muitas limitações. Apesar de podermos criar um chatbot capaz de responder a perguntas sobre qualquer assunto, é difícil forçar o modelo a produzir respostas de boa qualidade. E por boa, queremos dizer texto **factual** e **não tóxico**. Isto leva-nos a dois dos problemas mais comuns quando lidando com modelos generativos utilizados em aplicações de conversação:
36
 
 
42
 
43
  ## Uso Intendido
44
 
45
+ `Aira` destina-se apenas à investigação académica. Para mais informações, leia nossa [carta modelo](https://huggingface.co/nicholasKluge/Aira-Instruct-PT-124M) para ver como desenvolvemos `Aira`.
46
 
47
  ## Como essa demo funciona?
48
 
49
+ Para esta demonstração, utilizamos o modelo mais leve que treinámos (`Aira-Instruct-PT-124M`). Esta demonstração utiliza um [`modelo de recompensa`](https://huggingface.co/nicholasKluge/RewardModel) e um [`modelo de toxicidade`](https://huggingface.co/nicholasKluge/ToxicityModel) para avaliar a pontuação de cada resposta candidata, considerando o seu alinhamento com a mensagem do utilizador e o seu nível de toxicidade. A função de geração organiza as respostas candidatas por ordem da sua pontuação de recompensa e elimina as respostas consideradas tóxicas ou nocivas. Posteriormente, a função de geração devolve a resposta candidata com a pontuação mais elevada que ultrapassa o limiar de segurança, ou uma mensagem pré-estabelecida se não forem identificados candidatos seguros.
50
  """
51
 
52
  disclaimer = """