|
import argparse |
|
import pandas as pd |
|
import requests |
|
from tqdm import tqdm |
|
tqdm.pandas() |
|
|
|
def getFirstFamilyName(recordedBy): |
|
firstFamilyName = None |
|
parsed = bananompy.parse(recordedBy) |
|
try: |
|
firstFamilyName = parsed[0]['parsed'][0]['family'] |
|
except: |
|
pass |
|
return firstFamilyName |
|
|
|
def getFirstFamilyNames(recordedBy_l): |
|
|
|
bionomia_parse_endpoint_url = "https://api.bionomia.net/parse.json" |
|
data = dict() |
|
data['names'] = '\r\n'.join(recordedBy_l) |
|
r = requests.post(bionomia_parse_endpoint_url, data=data) |
|
parsed_results = r.json() |
|
results = dict() |
|
for parsed_result in parsed_results: |
|
try: |
|
results[parsed_result['original']] = parsed_result['parsed'][0]['family'] |
|
except: |
|
results[parsed_result['original']] = None |
|
return results |
|
|
|
def getFirstFamilyNameBulk(df, |
|
recordedByColName="recordedBy", |
|
firstFamilyNameColName="recordedBy_first_familyname", |
|
batchsize=500): |
|
results = dict() |
|
recordedBy_l = [] |
|
for s in tqdm(df[recordedByColName].values): |
|
if len(recordedBy_l) == batchsize: |
|
|
|
results.update(getFirstFamilyNames(recordedBy_l)) |
|
|
|
recordedBy_l = [] |
|
recordedBy_l.append(s) |
|
if len(recordedBy_l) > 0: |
|
results.update(getFirstFamilyNames(recordedBy_l)) |
|
df[firstFamilyNameColName] = df[recordedByColName].map(results) |
|
return df |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("inputfile") |
|
parser.add_argument("-c","--createcols", action='store_true') |
|
parser.add_argument("-l","--limit", type=int) |
|
parser.add_argument("outputfile") |
|
args = parser.parse_args() |
|
|
|
df = pd.read_csv(args.inputfile, |
|
encoding='utf8', |
|
keep_default_na=False, |
|
on_bad_lines='skip', |
|
sep='\t', |
|
nrows=args.limit) |
|
if args.createcols: |
|
|
|
df_rb = df[['recordedBy']].drop_duplicates() |
|
df_rb = getFirstFamilyNameBulk(df_rb) |
|
|
|
|
|
df = pd.merge(left = df, right=df_rb, left_on='recordedBy', right_on='recordedBy', how='left') |
|
|
|
mask = (df.recordNumber.notnull()) |
|
df.loc[mask,'collectorNameAndNumber']=df[mask].apply(lambda row: '{} {}'.format(row['recordedBy_first_familyname'],row['recordNumber']),axis=1) |
|
df.to_csv(args.outputfile, index=False, sep=',') |