Spaces:
Running
Running
import json | |
import os | |
from datetime import datetime, timezone | |
from src.display.formatting import styled_error, styled_message, styled_warning | |
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO | |
from src.submission.check_validity import ( | |
already_submitted_models, | |
check_model_card, | |
get_model_size, | |
is_model_on_hub, | |
) | |
REQUESTED_MODELS = None | |
USERS_TO_SUBMISSION_DATES = None | |
OUT_DIR = f"{EVAL_REQUESTS_PATH}" | |
RESULTS_PATH = f"{OUT_DIR}/evaluation.json" | |
# def add_new_eval( | |
# model: str, | |
# base_model: str, | |
# revision: str, | |
# precision: str, | |
# weight_type: str, | |
# model_type: str, | |
# ): | |
# global REQUESTED_MODELS | |
# global USERS_TO_SUBMISSION_DATES | |
# if not REQUESTED_MODELS: | |
# REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) | |
# user_name = "" | |
# model_path = model | |
# if "/" in model: | |
# user_name = model.split("/")[0] | |
# model_path = model.split("/")[1] | |
# precision = precision.split(" ")[0] | |
# current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") | |
# if model_type is None or model_type == "": | |
# return styled_error("Please select a model type.") | |
# # Does the model actually exist? | |
# if revision == "": | |
# revision = "main" | |
# # Is the model on the hub? | |
# if weight_type in ["Delta", "Adapter"]: | |
# base_model_on_hub, error, _ = is_model_on_hub( | |
# model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True | |
# ) | |
# if not base_model_on_hub: | |
# return styled_error(f'Base model "{base_model}" {error}') | |
# if not weight_type == "Adapter": | |
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True) | |
# if not model_on_hub: | |
# return styled_error(f'Model "{model}" {error}') | |
# # Is the model info correctly filled? | |
# try: | |
# model_info = API.model_info(repo_id=model, revision=revision) | |
# except Exception: | |
# return styled_error("Could not get your model information. Please fill it up properly.") | |
# model_size = get_model_size(model_info=model_info, precision=precision) | |
# # Were the model card and license filled? | |
# try: | |
# license = model_info.cardData["license"] | |
# except Exception: | |
# return styled_error("Please select a license for your model") | |
# modelcard_OK, error_msg = check_model_card(model) | |
# if not modelcard_OK: | |
# return styled_error(error_msg) | |
# # Seems good, creating the eval | |
# print("Adding new eval") | |
# eval_entry = { | |
# "model": model, | |
# "base_model": base_model, | |
# "revision": revision, | |
# "precision": precision, | |
# "weight_type": weight_type, | |
# "status": "PENDING", | |
# "submitted_time": current_time, | |
# "model_type": model_type, | |
# "likes": model_info.likes, | |
# "params": model_size, | |
# "license": license, | |
# "private": False, | |
# } | |
# # Check for duplicate submission | |
# if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: | |
# return styled_warning("This model has been already submitted.") | |
# print("Creating eval file") | |
# OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" | |
# os.makedirs(OUT_DIR, exist_ok=True) | |
# out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" | |
# with open(out_path, "w") as f: | |
# f.write(json.dumps(eval_entry)) | |
# print("Uploading eval file") | |
# API.upload_file( | |
# path_or_fileobj=out_path, | |
# path_in_repo=out_path.split("eval-queue/")[1], | |
# repo_id=QUEUE_REPO, | |
# repo_type="dataset", | |
# commit_message=f"Add {model} to eval queue", | |
# ) | |
# # Remove the local file | |
# os.remove(out_path) | |
# return styled_message( | |
# "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list." | |
# ) | |
def format_error(msg): | |
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>" | |
def format_warning(msg): | |
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>" | |
def format_log(msg): | |
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>" | |
def model_hyperlink(link, model_name): | |
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>' | |
def input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail): | |
for input in [model, model_family, forget_rate, url, organisation]: | |
if input == "": | |
return format_warning("Please fill all the fields.") | |
# Very basic email parsing | |
_, parsed_mail = parseaddr(mail) | |
if not "@" in parsed_mail: | |
return format_warning("Please provide a valid email adress.") | |
if path_to_file is None: | |
return format_warning("Please attach a file.") | |
return parsed_mail | |
def add_new_eval( | |
model: str, | |
model_family: str, | |
forget_rate: str, | |
url: str, | |
path_to_file: str, | |
organisation: str, | |
mail: str, | |
): | |
parsed_mail = input_verification(model, model_family, forget_rate, url, path_to_file, organisation, mail) | |
# load the file | |
df = pd.read_csv(path_to_file) | |
# modify the df to include metadata | |
df["model"] = model | |
df["model_family"] = model_family | |
df["forget_rate"] = forget_rate | |
df["url"] = url | |
df["organisation"] = organisation | |
df["mail"] = parsed_mail | |
df["timestamp"] = datetime.datetime.now() | |
# upload to spaces using the hf api at | |
path_in_repo = f"versions/{model_family}-{forget_rate.replace('%', 'p')}" | |
file_name = f"{model}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv" | |
# upload the df to spaces | |
import io | |
buffer = io.BytesIO() | |
df.to_csv(buffer, index=False) # Write the DataFrame to a buffer in CSV format | |
buffer.seek(0) # Rewind the buffer to the beginning | |
API.upload_file( | |
repo_id=RESULTS_PATH, | |
path_in_repo=f"{path_in_repo}/{file_name}", | |
path_or_fileobj=buffer, | |
token=TOKEN, | |
repo_type="space", | |
) | |
return format_log( | |
f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed" | |
) | |