Spaces:
Running
Running
Clémentine
commited on
Commit
·
24622c4
1
Parent(s):
55cc480
simplified the template
Browse files- README.md +0 -1
- app.py +5 -12
- main_backend.py +0 -78
- scripts/create_request_file.py +0 -105
- scripts/fix_harness_import.py +0 -11
- src/backend/manage_requests.py +0 -122
- src/backend/run_eval_suite.py +0 -57
- src/backend/sort_queue.py +0 -28
- src/display/css_html_js.py +0 -6
- src/display/utils.py +0 -3
- src/envs.py +1 -3
- src/leaderboard/read_evals.py +0 -1
README.md
CHANGED
@@ -37,4 +37,3 @@ Request files are created automatically by this tool.
|
|
37 |
|
38 |
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
39 |
|
40 |
-
If you want to run your own backend, you only need to change the logic in src/backend/run_eval_suite, which at the moment launches the Eleuther AI Harness.
|
|
|
37 |
|
38 |
If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
|
39 |
|
|
app.py
CHANGED
@@ -26,19 +26,14 @@ from src.display.utils import (
|
|
26 |
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
-
from src.envs import API,
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
34 |
-
subprocess.run(["python", "scripts/fix_harness_import.py"])
|
35 |
-
|
36 |
def restart_space():
|
37 |
API.restart_space(repo_id=REPO_ID)
|
38 |
|
39 |
-
def launch_backend():
|
40 |
-
_ = subprocess.run(["python", "main_backend.py"])
|
41 |
-
|
42 |
try:
|
43 |
print(EVAL_REQUESTS_PATH)
|
44 |
snapshot_download(
|
@@ -82,7 +77,7 @@ def update_table(
|
|
82 |
|
83 |
|
84 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
85 |
-
return df[(df[AutoEvalColumn.
|
86 |
|
87 |
|
88 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
@@ -92,7 +87,7 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
92 |
]
|
93 |
# We use COLS to maintain sorting
|
94 |
filtered_df = df[
|
95 |
-
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
96 |
]
|
97 |
return filtered_df
|
98 |
|
@@ -157,7 +152,7 @@ with demo:
|
|
157 |
choices=[
|
158 |
c.name
|
159 |
for c in fields(AutoEvalColumn)
|
160 |
-
if not c.hidden and not c.never_hidden
|
161 |
],
|
162 |
value=[
|
163 |
c.name
|
@@ -200,7 +195,6 @@ with demo:
|
|
200 |
value=leaderboard_df[
|
201 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
202 |
+ shown_columns.value
|
203 |
-
+ [AutoEvalColumn.dummy.name]
|
204 |
],
|
205 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
206 |
datatype=TYPES,
|
@@ -309,7 +303,7 @@ with demo:
|
|
309 |
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
310 |
label="Precision",
|
311 |
multiselect=False,
|
312 |
-
value="float16"
|
313 |
interactive=True,
|
314 |
)
|
315 |
weight_type = gr.Dropdown(
|
@@ -348,6 +342,5 @@ with demo:
|
|
348 |
|
349 |
scheduler = BackgroundScheduler()
|
350 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
351 |
-
scheduler.add_job(launch_backend, "interval", seconds=100) # will only allow one job to be run at the same time
|
352 |
scheduler.start()
|
353 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
26 |
WeightType,
|
27 |
Precision
|
28 |
)
|
29 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
30 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
31 |
from src.submission.submit import add_new_eval
|
32 |
|
33 |
|
|
|
|
|
34 |
def restart_space():
|
35 |
API.restart_space(repo_id=REPO_ID)
|
36 |
|
|
|
|
|
|
|
37 |
try:
|
38 |
print(EVAL_REQUESTS_PATH)
|
39 |
snapshot_download(
|
|
|
77 |
|
78 |
|
79 |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
80 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
81 |
|
82 |
|
83 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
|
87 |
]
|
88 |
# We use COLS to maintain sorting
|
89 |
filtered_df = df[
|
90 |
+
always_here_cols + [c for c in COLS if c in df.columns and c in columns]
|
91 |
]
|
92 |
return filtered_df
|
93 |
|
|
|
152 |
choices=[
|
153 |
c.name
|
154 |
for c in fields(AutoEvalColumn)
|
155 |
+
if not c.hidden and not c.never_hidden
|
156 |
],
|
157 |
value=[
|
158 |
c.name
|
|
|
195 |
value=leaderboard_df[
|
196 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
197 |
+ shown_columns.value
|
|
|
198 |
],
|
199 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
200 |
datatype=TYPES,
|
|
|
303 |
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
304 |
label="Precision",
|
305 |
multiselect=False,
|
306 |
+
value="float16",
|
307 |
interactive=True,
|
308 |
)
|
309 |
weight_type = gr.Dropdown(
|
|
|
342 |
|
343 |
scheduler = BackgroundScheduler()
|
344 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
|
|
345 |
scheduler.start()
|
346 |
demo.queue(default_concurrency_limit=40).launch()
|
main_backend.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import pprint
|
3 |
-
|
4 |
-
from huggingface_hub import snapshot_download
|
5 |
-
|
6 |
-
logging.getLogger("openai").setLevel(logging.WARNING)
|
7 |
-
|
8 |
-
from src.backend.run_eval_suite import run_evaluation
|
9 |
-
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
10 |
-
from src.backend.sort_queue import sort_models_by_priority
|
11 |
-
|
12 |
-
from src.envs import QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT, TOKEN
|
13 |
-
from src.about import Tasks, NUM_FEWSHOT
|
14 |
-
TASKS_HARNESS = [task.value.benchmark for task in Tasks]
|
15 |
-
|
16 |
-
logging.basicConfig(level=logging.ERROR)
|
17 |
-
pp = pprint.PrettyPrinter(width=80)
|
18 |
-
|
19 |
-
PENDING_STATUS = "PENDING"
|
20 |
-
RUNNING_STATUS = "RUNNING"
|
21 |
-
FINISHED_STATUS = "FINISHED"
|
22 |
-
FAILED_STATUS = "FAILED"
|
23 |
-
|
24 |
-
snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
25 |
-
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60, token=TOKEN)
|
26 |
-
|
27 |
-
def run_auto_eval():
|
28 |
-
current_pending_status = [PENDING_STATUS]
|
29 |
-
|
30 |
-
# pull the eval dataset from the hub and parse any eval requests
|
31 |
-
# check completed evals and set them to finished
|
32 |
-
check_completed_evals(
|
33 |
-
api=API,
|
34 |
-
checked_status=RUNNING_STATUS,
|
35 |
-
completed_status=FINISHED_STATUS,
|
36 |
-
failed_status=FAILED_STATUS,
|
37 |
-
hf_repo=QUEUE_REPO,
|
38 |
-
local_dir=EVAL_REQUESTS_PATH_BACKEND,
|
39 |
-
hf_repo_results=RESULTS_REPO,
|
40 |
-
local_dir_results=EVAL_RESULTS_PATH_BACKEND
|
41 |
-
)
|
42 |
-
|
43 |
-
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
|
44 |
-
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
|
45 |
-
# Sort the evals by priority (first submitted first run)
|
46 |
-
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
|
47 |
-
|
48 |
-
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
|
49 |
-
|
50 |
-
if len(eval_requests) == 0:
|
51 |
-
return
|
52 |
-
|
53 |
-
eval_request = eval_requests[0]
|
54 |
-
pp.pprint(eval_request)
|
55 |
-
|
56 |
-
set_eval_request(
|
57 |
-
api=API,
|
58 |
-
eval_request=eval_request,
|
59 |
-
set_to_status=RUNNING_STATUS,
|
60 |
-
hf_repo=QUEUE_REPO,
|
61 |
-
local_dir=EVAL_REQUESTS_PATH_BACKEND,
|
62 |
-
)
|
63 |
-
|
64 |
-
run_evaluation(
|
65 |
-
eval_request=eval_request,
|
66 |
-
task_names=TASKS_HARNESS,
|
67 |
-
num_fewshot=NUM_FEWSHOT,
|
68 |
-
local_dir=EVAL_RESULTS_PATH_BACKEND,
|
69 |
-
results_repo=RESULTS_REPO,
|
70 |
-
batch_size=1,
|
71 |
-
device=DEVICE,
|
72 |
-
no_cache=True,
|
73 |
-
limit=LIMIT
|
74 |
-
)
|
75 |
-
|
76 |
-
|
77 |
-
if __name__ == "__main__":
|
78 |
-
run_auto_eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/create_request_file.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import pprint
|
4 |
-
import re
|
5 |
-
from datetime import datetime, timezone
|
6 |
-
|
7 |
-
import click
|
8 |
-
from colorama import Fore
|
9 |
-
from huggingface_hub import HfApi, snapshot_download
|
10 |
-
from src.envs import TOKEN, EVAL_REQUESTS_PATH, QUEUE_REPO
|
11 |
-
|
12 |
-
precisions = ("float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)", "GPTQ", "float32")
|
13 |
-
model_types = ("pretrained", "fine-tuned", "RL-tuned", "instruction-tuned")
|
14 |
-
weight_types = ("Original", "Delta", "Adapter")
|
15 |
-
|
16 |
-
|
17 |
-
def get_model_size(model_info, precision: str):
|
18 |
-
size_pattern = size_pattern = re.compile(r"(\d\.)?\d+(b|m)")
|
19 |
-
try:
|
20 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
21 |
-
except (AttributeError, TypeError):
|
22 |
-
try:
|
23 |
-
size_match = re.search(size_pattern, model_info.modelId.lower())
|
24 |
-
model_size = size_match.group(0)
|
25 |
-
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
26 |
-
except AttributeError:
|
27 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
28 |
-
|
29 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
30 |
-
model_size = size_factor * model_size
|
31 |
-
return model_size
|
32 |
-
|
33 |
-
|
34 |
-
def main():
|
35 |
-
api = HfApi()
|
36 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
37 |
-
snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", token=TOKEN)
|
38 |
-
|
39 |
-
model_name = click.prompt("Enter model name")
|
40 |
-
revision = click.prompt("Enter revision", default="main")
|
41 |
-
precision = click.prompt("Enter precision", default="float16", type=click.Choice(precisions))
|
42 |
-
model_type = click.prompt("Enter model type", type=click.Choice(model_types))
|
43 |
-
weight_type = click.prompt("Enter weight type", default="Original", type=click.Choice(weight_types))
|
44 |
-
base_model = click.prompt("Enter base model", default="")
|
45 |
-
status = click.prompt("Enter status", default="FINISHED")
|
46 |
-
|
47 |
-
try:
|
48 |
-
model_info = api.model_info(repo_id=model_name, revision=revision)
|
49 |
-
except Exception as e:
|
50 |
-
print(f"{Fore.RED}Could not find model info for {model_name} on the Hub\n{e}{Fore.RESET}")
|
51 |
-
return 1
|
52 |
-
|
53 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
54 |
-
|
55 |
-
try:
|
56 |
-
license = model_info.cardData["license"]
|
57 |
-
except Exception:
|
58 |
-
license = "?"
|
59 |
-
|
60 |
-
eval_entry = {
|
61 |
-
"model": model_name,
|
62 |
-
"base_model": base_model,
|
63 |
-
"revision": revision,
|
64 |
-
"private": False,
|
65 |
-
"precision": precision,
|
66 |
-
"weight_type": weight_type,
|
67 |
-
"status": status,
|
68 |
-
"submitted_time": current_time,
|
69 |
-
"model_type": model_type,
|
70 |
-
"likes": model_info.likes,
|
71 |
-
"params": model_size,
|
72 |
-
"license": license,
|
73 |
-
}
|
74 |
-
|
75 |
-
user_name = ""
|
76 |
-
model_path = model_name
|
77 |
-
if "/" in model_name:
|
78 |
-
user_name = model_name.split("/")[0]
|
79 |
-
model_path = model_name.split("/")[1]
|
80 |
-
|
81 |
-
pprint.pprint(eval_entry)
|
82 |
-
|
83 |
-
if click.confirm("Do you want to continue? This request file will be pushed to the hub"):
|
84 |
-
click.echo("continuing...")
|
85 |
-
|
86 |
-
out_dir = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
87 |
-
os.makedirs(out_dir, exist_ok=True)
|
88 |
-
out_path = f"{out_dir}/{model_path}_eval_request_{False}_{precision}_{weight_type}.json"
|
89 |
-
|
90 |
-
with open(out_path, "w") as f:
|
91 |
-
f.write(json.dumps(eval_entry))
|
92 |
-
|
93 |
-
api.upload_file(
|
94 |
-
path_or_fileobj=out_path,
|
95 |
-
path_in_repo=out_path.split(f"{EVAL_REQUESTS_PATH}/")[1],
|
96 |
-
repo_id=QUEUE_REPO,
|
97 |
-
repo_type="dataset",
|
98 |
-
commit_message=f"Add {model_name} to eval queue",
|
99 |
-
)
|
100 |
-
else:
|
101 |
-
click.echo("aborting...")
|
102 |
-
|
103 |
-
|
104 |
-
if __name__ == "__main__":
|
105 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
scripts/fix_harness_import.py
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
"""This file should be used after pip install -r requirements.
|
2 |
-
It creates a folder not ported during harness package creation (as they don't use a Manifest file atm and it ignore `.json` files).
|
3 |
-
It will need to be updated if we want to use the harness' version of big bench to actually copy the json files.
|
4 |
-
"""
|
5 |
-
import os
|
6 |
-
|
7 |
-
import lm_eval
|
8 |
-
|
9 |
-
if __name__ == "__main__":
|
10 |
-
lm_eval_path = lm_eval.__path__[0]
|
11 |
-
os.makedirs(os.path.join(lm_eval_path, "datasets", "bigbench_resources"), exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/backend/manage_requests.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import glob
|
2 |
-
import json
|
3 |
-
from dataclasses import dataclass
|
4 |
-
from typing import Optional
|
5 |
-
|
6 |
-
from huggingface_hub import HfApi, snapshot_download
|
7 |
-
from src.envs import TOKEN
|
8 |
-
|
9 |
-
@dataclass
|
10 |
-
class EvalRequest:
|
11 |
-
model: str
|
12 |
-
private: bool
|
13 |
-
status: str
|
14 |
-
json_filepath: str
|
15 |
-
weight_type: str = "Original"
|
16 |
-
model_type: str = "" # pretrained, finetuned, with RL
|
17 |
-
precision: str = "" # float16, bfloat16
|
18 |
-
base_model: Optional[str] = None # for adapter models
|
19 |
-
revision: str = "main" # commit
|
20 |
-
submitted_time: Optional[str] = "2022-05-18T11:40:22.519222" # random date just so that we can still order requests by date
|
21 |
-
model_type: Optional[str] = None
|
22 |
-
likes: Optional[int] = 0
|
23 |
-
params: Optional[int] = None
|
24 |
-
license: Optional[str] = ""
|
25 |
-
|
26 |
-
def get_model_args(self):
|
27 |
-
model_args = f"pretrained={self.model},revision={self.revision}"
|
28 |
-
|
29 |
-
if self.precision in ["float16", "bfloat16", "float32"]:
|
30 |
-
model_args += f",dtype={self.precision}"
|
31 |
-
# Quantized models need some added config, the install of bits and bytes, etc
|
32 |
-
#elif self.precision == "8bit":
|
33 |
-
# model_args += ",load_in_8bit=True"
|
34 |
-
#elif self.precision == "4bit":
|
35 |
-
# model_args += ",load_in_4bit=True"
|
36 |
-
#elif self.precision == "GPTQ":
|
37 |
-
# A GPTQ model does not need dtype to be specified,
|
38 |
-
# it will be inferred from the config
|
39 |
-
pass
|
40 |
-
else:
|
41 |
-
raise Exception(f"Unknown precision {self.precision}.")
|
42 |
-
|
43 |
-
return model_args
|
44 |
-
|
45 |
-
|
46 |
-
def set_eval_request(api: HfApi, eval_request: EvalRequest, set_to_status: str, hf_repo: str, local_dir: str):
|
47 |
-
"""Updates a given eval request with its new status on the hub (running, completed, failed, ...)"""
|
48 |
-
json_filepath = eval_request.json_filepath
|
49 |
-
|
50 |
-
with open(json_filepath) as fp:
|
51 |
-
data = json.load(fp)
|
52 |
-
|
53 |
-
data["status"] = set_to_status
|
54 |
-
|
55 |
-
with open(json_filepath, "w") as f:
|
56 |
-
f.write(json.dumps(data))
|
57 |
-
|
58 |
-
api.upload_file(
|
59 |
-
path_or_fileobj=json_filepath,
|
60 |
-
path_in_repo=json_filepath.replace(local_dir, ""),
|
61 |
-
repo_id=hf_repo,
|
62 |
-
repo_type="dataset",
|
63 |
-
)
|
64 |
-
|
65 |
-
|
66 |
-
def get_eval_requests(job_status: list, local_dir: str, hf_repo: str) -> list[EvalRequest]:
|
67 |
-
"""Get all pending evaluation requests and return a list in which private
|
68 |
-
models appearing first, followed by public models sorted by the number of
|
69 |
-
likes.
|
70 |
-
|
71 |
-
Returns:
|
72 |
-
`list[EvalRequest]`: a list of model info dicts.
|
73 |
-
"""
|
74 |
-
snapshot_download(repo_id=hf_repo, revision="main", local_dir=local_dir, repo_type="dataset", max_workers=60, token=TOKEN)
|
75 |
-
json_files = glob.glob(f"{local_dir}/**/*.json", recursive=True)
|
76 |
-
|
77 |
-
eval_requests = []
|
78 |
-
for json_filepath in json_files:
|
79 |
-
with open(json_filepath) as fp:
|
80 |
-
data = json.load(fp)
|
81 |
-
if data["status"] in job_status:
|
82 |
-
data["json_filepath"] = json_filepath
|
83 |
-
eval_request = EvalRequest(**data)
|
84 |
-
eval_requests.append(eval_request)
|
85 |
-
|
86 |
-
return eval_requests
|
87 |
-
|
88 |
-
|
89 |
-
def check_completed_evals(
|
90 |
-
api: HfApi,
|
91 |
-
hf_repo: str,
|
92 |
-
local_dir: str,
|
93 |
-
checked_status: str,
|
94 |
-
completed_status: str,
|
95 |
-
failed_status: str,
|
96 |
-
hf_repo_results: str,
|
97 |
-
local_dir_results: str,
|
98 |
-
):
|
99 |
-
"""Checks if the currently running evals are completed, if yes, update their status on the hub."""
|
100 |
-
snapshot_download(repo_id=hf_repo_results, revision="main", local_dir=local_dir_results, repo_type="dataset", max_workers=60, token=TOKEN)
|
101 |
-
|
102 |
-
running_evals = get_eval_requests(checked_status, hf_repo=hf_repo, local_dir=local_dir)
|
103 |
-
|
104 |
-
for eval_request in running_evals:
|
105 |
-
model = eval_request.model
|
106 |
-
print("====================================")
|
107 |
-
print(f"Checking {model}")
|
108 |
-
|
109 |
-
output_path = model
|
110 |
-
output_file = f"{local_dir_results}/{output_path}/results*.json"
|
111 |
-
output_file_exists = len(glob.glob(output_file)) > 0
|
112 |
-
|
113 |
-
if output_file_exists:
|
114 |
-
print(
|
115 |
-
f"EXISTS output file exists for {model} setting it to {completed_status}"
|
116 |
-
)
|
117 |
-
set_eval_request(api, eval_request, completed_status, hf_repo, local_dir)
|
118 |
-
else:
|
119 |
-
print(
|
120 |
-
f"No result file found for {model} setting it to {failed_status}"
|
121 |
-
)
|
122 |
-
set_eval_request(api, eval_request, failed_status, hf_repo, local_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/backend/run_eval_suite.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import logging
|
4 |
-
from datetime import datetime
|
5 |
-
|
6 |
-
from lm_eval import tasks, evaluator, utils
|
7 |
-
|
8 |
-
from src.envs import RESULTS_REPO, API
|
9 |
-
from src.backend.manage_requests import EvalRequest
|
10 |
-
|
11 |
-
logging.getLogger("openai").setLevel(logging.WARNING)
|
12 |
-
|
13 |
-
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
|
14 |
-
if limit:
|
15 |
-
print(
|
16 |
-
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
|
17 |
-
)
|
18 |
-
|
19 |
-
task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
|
20 |
-
|
21 |
-
print(f"Selected Tasks: {task_names}")
|
22 |
-
|
23 |
-
results = evaluator.simple_evaluate(
|
24 |
-
model="hf-causal-experimental", # "hf-causal"
|
25 |
-
model_args=eval_request.get_model_args(),
|
26 |
-
tasks=task_names,
|
27 |
-
num_fewshot=num_fewshot,
|
28 |
-
batch_size=batch_size,
|
29 |
-
device=device,
|
30 |
-
no_cache=no_cache,
|
31 |
-
limit=limit,
|
32 |
-
write_out=True,
|
33 |
-
output_base_path="logs"
|
34 |
-
)
|
35 |
-
|
36 |
-
results["config"]["model_dtype"] = eval_request.precision
|
37 |
-
results["config"]["model_name"] = eval_request.model
|
38 |
-
results["config"]["model_sha"] = eval_request.revision
|
39 |
-
|
40 |
-
dumped = json.dumps(results, indent=2)
|
41 |
-
print(dumped)
|
42 |
-
|
43 |
-
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
|
44 |
-
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
45 |
-
with open(output_path, "w") as f:
|
46 |
-
f.write(dumped)
|
47 |
-
|
48 |
-
print(evaluator.make_table(results))
|
49 |
-
|
50 |
-
API.upload_file(
|
51 |
-
path_or_fileobj=output_path,
|
52 |
-
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
|
53 |
-
repo_id=results_repo,
|
54 |
-
repo_type="dataset",
|
55 |
-
)
|
56 |
-
|
57 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/backend/sort_queue.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import re
|
2 |
-
from dataclasses import dataclass
|
3 |
-
|
4 |
-
from huggingface_hub import HfApi
|
5 |
-
|
6 |
-
from src.backend.manage_requests import EvalRequest
|
7 |
-
|
8 |
-
|
9 |
-
@dataclass
|
10 |
-
class ModelMetadata:
|
11 |
-
likes: int = 0
|
12 |
-
size: int = 15
|
13 |
-
|
14 |
-
|
15 |
-
def sort_models_by_priority(api: HfApi, models: list[EvalRequest]) -> list[EvalRequest]:
|
16 |
-
private_models = [model for model in models if model.private]
|
17 |
-
public_models = [model for model in models if not model.private]
|
18 |
-
|
19 |
-
return sort_by_submit_date(private_models) + sort_by_submit_date(public_models)
|
20 |
-
|
21 |
-
def sort_by_submit_date(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
22 |
-
return sorted(eval_requests, key=lambda x: x.submitted_time, reverse=False)
|
23 |
-
|
24 |
-
def sort_by_size(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
25 |
-
return sorted(eval_requests, key=lambda x: x.params, reverse=False)
|
26 |
-
|
27 |
-
def sort_by_likes(eval_requests: list[EvalRequest]) -> list[EvalRequest]:
|
28 |
-
return sorted(eval_requests, key=lambda x: x.likes, reverse=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/css_html_js.py
CHANGED
@@ -38,12 +38,6 @@ custom_css = """
|
|
38 |
padding: 0px;
|
39 |
}
|
40 |
|
41 |
-
/* Hides the final AutoEvalColumn */
|
42 |
-
#llm-benchmark-tab-table table td:last-child,
|
43 |
-
#llm-benchmark-tab-table table th:last-child {
|
44 |
-
display: none;
|
45 |
-
}
|
46 |
-
|
47 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
48 |
table td:first-child,
|
49 |
table th:first-child {
|
|
|
38 |
padding: 0px;
|
39 |
}
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
/* Limit the width of the first AutoEvalColumn so that names don't expand too much */
|
42 |
table td:first-child,
|
43 |
table th:first-child {
|
src/display/utils.py
CHANGED
@@ -19,7 +19,6 @@ class ColumnContent:
|
|
19 |
displayed_by_default: bool
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
22 |
-
dummy: bool = False
|
23 |
|
24 |
## Leaderboard columns
|
25 |
auto_eval_column_dict = []
|
@@ -40,8 +39,6 @@ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B
|
|
40 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
41 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
-
# Dummy column for the search bar (hidden by the custom CSS)
|
44 |
-
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
45 |
|
46 |
# We use make dataclass to dynamically fill the scores from Tasks
|
47 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
19 |
displayed_by_default: bool
|
20 |
hidden: bool = False
|
21 |
never_hidden: bool = False
|
|
|
22 |
|
23 |
## Leaderboard columns
|
24 |
auto_eval_column_dict = []
|
|
|
39 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
40 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
41 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
|
|
|
|
42 |
|
43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/envs.py
CHANGED
@@ -6,9 +6,7 @@ from huggingface_hub import HfApi
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
-
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request
|
10 |
-
DEVICE = "cpu" # "cuda:0" if you add compute
|
11 |
-
LIMIT = 20 # !!!! Should be None for actual evaluations!!!
|
12 |
# ----------------------------------
|
13 |
|
14 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
|
6 |
# ----------------------------------
|
7 |
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
|
9 |
+
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
|
|
|
|
10 |
# ----------------------------------
|
11 |
|
12 |
REPO_ID = f"{OWNER}/leaderboard"
|
src/leaderboard/read_evals.py
CHANGED
@@ -116,7 +116,6 @@ class EvalResult:
|
|
116 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
117 |
AutoEvalColumn.architecture.name: self.architecture,
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
119 |
-
AutoEvalColumn.dummy.name: self.full_model,
|
120 |
AutoEvalColumn.revision.name: self.revision,
|
121 |
AutoEvalColumn.average.name: average,
|
122 |
AutoEvalColumn.license.name: self.license,
|
|
|
116 |
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
|
117 |
AutoEvalColumn.architecture.name: self.architecture,
|
118 |
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
|
|
|
119 |
AutoEvalColumn.revision.name: self.revision,
|
120 |
AutoEvalColumn.average.name: average,
|
121 |
AutoEvalColumn.license.name: self.license,
|