Hip-Implant / app.py
nishantguvvada's picture
added image
30b32b9
raw
history blame
1.29 kB
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
@st.cache_resource()
def load_model():
model=tf.keras.models.load_model('./hip_impant_model.h5')
return model
st.write("""
# Image Classification
"""
)
image = Image.open('./title.jpg')
st.image(image)
st.title(":red[My AI Journey] :blue[Nishant Guvvada] X-ray Assistant")
file = st.file_uploader("Upload an X-ray image", type= ['png', 'jpg'])
def model_prediction(path):
resize = tf.image.resize(path, (256,256))
with st.spinner('Model is being loaded..'):
model=load_model()
yhat = model.predict(np.expand_dims(resize/255, 0))
if(yhat>0.5):
result = "Prediction is loose"
else:
result = "Prediction is control"
return result
def on_click():
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
image = image.convert('RGB')
predictions = model_prediction(np.array(image))
st.write(predictions)
print(
"This image most likely belongs to {}."
.format(predictions)
)
st.button('Predict', on_click=on_click)