Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
def load_model(): | |
model=tf.keras.models.load_model('./hip_impant_model.h5') | |
return model | |
with st.spinner('Model is being loaded..'): | |
model=load_model() | |
st.write(""" | |
# Image Classification | |
""" | |
) | |
file = st.file_uploader("Upload an X-ray image") | |
import cv2 | |
from PIL import Image, ImageOps | |
import numpy as np | |
st.set_option('deprecation.showfileUploaderEncoding', False) | |
def model_prediction(img, model): | |
resize = tf.image.resize(img, (256,256)) | |
yhat = model.predict(np.expand_dims(resize/255, 0)) | |
if(yhat>0.5): | |
result = "Prediction is loose" | |
else: | |
result = "Prediction is control" | |
return result | |
if file is None: | |
st.text("Please upload an image file") | |
else: | |
image = Image.open(file) | |
st.image(image, use_column_width=True) | |
predictions = mode_prediction(image, model) | |
st.write(prediction) | |
print( | |
"This image most likely belongs to {}." | |
.format(prediction) | |
) | |