File size: 2,428 Bytes
d6d7f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae39ee
356a794
d6d7f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356a794
d6d7f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import streamlit as st
import pickle
import requests

def fetch_poster(movie_id):
     url = "https://api.themoviedb.org/3/movie/{}?api_key=c7ec19ffdd3279641fb606d19ceb9bb1&language=en-US".format(movie_id)
     data=requests.get(url)
     data=data.json()
     poster_path = data['poster_path']
     full_path = "https://image.tmdb.org/t/p/w500/"+poster_path
     return full_path

movies = pickle.load(open("movies_list.pkl", 'rb'))
similarity = pickle.load(open("similarity.pkl", 'rb'))
movies_list=movies['title'].values

st.header("Movie Recommender System")

st.text('The movie recommendation application is a content-based filtering system. The attributes of user watched movies which include the title and tags, are used to recommend movies. Cosine similarity is used as a degree of similarity in the vector space')

import streamlit.components.v1 as components

imageCarouselComponent = components.declare_component("image-carousel-component", path="frontend/public")


imageUrls = [
    fetch_poster(1632),
    fetch_poster(299536),
    fetch_poster(17455),
    fetch_poster(2830),
    fetch_poster(429422),
    fetch_poster(9722),
    fetch_poster(13972),
    fetch_poster(240),
    fetch_poster(155),
    fetch_poster(598),
    fetch_poster(914),
    fetch_poster(255709),
    fetch_poster(572154)
   
    ]


imageCarouselComponent(imageUrls=imageUrls, height=200)
selectvalue=st.selectbox("Select movie from dropdown", movies_list)

def recommend(movie):
    index=movies[movies['title']==movie].index[0]
    distance = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda vector:vector[1])
    recommend_movie=[]
    recommend_poster=[]
    for i in distance[1:6]:
        movies_id=movies.iloc[i[0]].id
        recommend_movie.append(movies.iloc[i[0]].title)
        recommend_poster.append(fetch_poster(movies_id))
    return recommend_movie, recommend_poster



if st.button("Show Recommendations"):
    movie_name, movie_poster = recommend(selectvalue)
    col1,col2,col3,col4,col5=st.columns(5)
    with col1:
        st.text(movie_name[0])
        st.image(movie_poster[0])
    with col2:
        st.text(movie_name[1])
        st.image(movie_poster[1])
    with col3:
        st.text(movie_name[2])
        st.image(movie_poster[2])
    with col4:
        st.text(movie_name[3])
        st.image(movie_poster[3])
    with col5:
        st.text(movie_name[4])
        st.image(movie_poster[4])