MTDemo / app.py
nisheeth's picture
Upload 9 files
37b69a5 verified
raw
history blame
1.85 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
from ui import title, description, examples
from langs import LANGS
#from langs_all import LANGS ##for 200+ languages
TASK = "translation"
CKPT = "facebook/nllb-200-distilled-1.3B"
#CKPT = "facebook/nllb-200-distilled-600M"
model = AutoModelForSeq2SeqLM.from_pretrained(CKPT)
tokenizer = AutoTokenizer.from_pretrained(CKPT)
# device = 0 if torch.cuda.is_available() else -1
def translate(text, src_lang, tgt_lang, max_length=512):
"""
Translate the text from source lang to target lang
"""
translation_pipeline = pipeline(TASK,
model=model,
tokenizer=tokenizer,
src_lang=src_lang,
tgt_lang=tgt_lang,
max_length=max_length)
# translation_pipeline = pipeline(TASK,
# model=model,
# tokenizer=tokenizer,
# src_lang=src_lang,
# tgt_lang=tgt_lang,
# max_length=max_length,
# device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
gr.Interface(
translate,
[
gr.components.Textbox(label="Text"),
gr.components.Dropdown(label="Source Language", choices=LANGS),
gr.components.Dropdown(label="Target Language", choices=LANGS),
gr.components.Slider(8, 512, value=512, step=8, label="Max Length")
],
["text"],
examples=examples,
# article=article,
cache_examples=False,
title=title,
description=description
).launch()