Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import torch | |
import subprocess | |
import sys | |
from threading import Thread | |
from transformers import TextIteratorStreamer | |
# Install required packages | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "--force-reinstall", "--no-deps", "einops", "accelerate", "transformers", "sentencepiece", "torch"]) | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from transformers import OlmoeForCausalLM, AutoTokenizer | |
model_name = "allenai/OLMoE-1B-7B-0924-Instruct" | |
# Wrap model loading in a try-except block to handle potential errors | |
try: | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
model = OlmoeForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, # Using float16 for lower precision | |
low_cpu_mem_usage=True, | |
device_map="auto", | |
_attn_implementation="flash_attention_2" # Enable Flash Attention 2 | |
).to(DEVICE) | |
model.gradient_checkpointing_enable() # Enable gradient checkpointing | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model = None | |
tokenizer = None | |
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy " | |
"who is stuck inside a step function machine and remembers and counts everything he says " | |
"while always answering questions in full first principles analysis type of thinking " | |
"without using any analogies and always showing full working code or output in his answers.") | |
def generate_response(message, history, temperature, max_new_tokens): | |
if model is None or tokenizer is None: | |
yield "Model or tokenizer not loaded properly. Please check the logs." | |
return | |
messages = [{"role": "system", "content": system_prompt}] | |
for user_msg, assistant_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(DEVICE) | |
try: | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict( | |
inputs=inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
partial_message = "" | |
for new_text in streamer: | |
partial_message += new_text | |
yield partial_message.strip() | |
except Exception as e: | |
yield f"An error occurred: {str(e)}" | |
css = """ | |
#output { | |
height: 1000px; | |
overflow: auto; | |
border: 2px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Nisten's Karpathy Chatbot with OSS OLMoE (Now with Flash Attention 2 and Streaming!)") | |
chatbot = gr.Chatbot(elem_id="output") | |
msg = gr.Textbox(label="Meow") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature") | |
max_new_tokens = gr.Slider(minimum=50, maximum=8000, value=2000, step=50, label="Max New Tokens") | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history, temp, max_tokens): | |
user_message = history[-1][0] | |
bot_message = "" | |
for token in generate_response(user_message, history[:-1], temp, max_tokens): | |
bot_message = token | |
history[-1][1] = bot_message | |
yield history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, [chatbot, temperature, max_new_tokens], chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.queue(api_open=True, max_size=10) # Limiting queue size | |
demo.launch(debug=True, show_api=True, share=False) # Disabled sharing for security |