nisten's picture
Update app.py
2b0dd1e verified
raw
history blame
2.47 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import subprocess
# Install flash attention
subprocess.run('pip install --upgrade --force-reinstall --no-deps --no-build-isolation transformers torch flash-attn ', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load model and tokenizer
model_name = "allenai/OLMoE-1B-7B-0924-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Define prompts
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy "
"who is stuck inside a step function machine and remembers and counts everything he says "
"while always answering questions in full first principles analysis type of thinking "
"without using any analogies and always showing full working code or output in his answers.")
user_prompt = '<|user|>\n'
assistant_prompt = '<|assistant|>\n'
prompt_suffix = "<|end|>\n"
def generate_response(message, history):
full_prompt = f"{system_prompt}\n{user_prompt}{message}{prompt_suffix}{assistant_prompt}"
inputs = tokenizer(full_prompt, return_tensors="pt").to("cuda:0")
generate_ids = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=True,
temperature=0.7,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.batch_decode(generate_ids[:, inputs['input_ids'].shape[1]:],
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
return response.strip()
# Set up Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Pissed Off Karpathy Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
user_message = history[-1][0]
bot_message = generate_response(user_message, history)
history[-1][1] = bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch(debug=True, share=True)