Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import subprocess | |
# Install flash attention | |
subprocess.run('pip install --upgrade --force-reinstall --no-deps --no-build-isolation transformers torch flash-attn ', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Load model and tokenizer | |
model_name = "allenai/OLMoE-1B-7B-0924-Instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
# Define prompts | |
system_prompt = ("Adopt the persona of hilariously pissed off Andrej Karpathy " | |
"who is stuck inside a step function machine and remembers and counts everything he says " | |
"while always answering questions in full first principles analysis type of thinking " | |
"without using any analogies and always showing full working code or output in his answers.") | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
def generate_response(message, history): | |
full_prompt = f"{system_prompt}\n{user_prompt}{message}{prompt_suffix}{assistant_prompt}" | |
inputs = tokenizer(full_prompt, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
do_sample=True, | |
temperature=0.7, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
response = tokenizer.batch_decode(generate_ids[:, inputs['input_ids'].shape[1]:], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False)[0] | |
return response.strip() | |
# Set up Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Pissed Off Karpathy Chatbot") | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
user_message = history[-1][0] | |
bot_message = generate_response(user_message, history) | |
history[-1][1] = bot_message | |
return history | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch(debug=True, share=True) |